2551 lines
82 KiB
Python
2551 lines
82 KiB
Python
|
from __future__ import absolute_import, unicode_literals
|
||
|
|
||
|
import abc
|
||
|
from abc import abstractmethod, abstractproperty
|
||
|
import collections
|
||
|
import functools
|
||
|
import re as stdlib_re # Avoid confusion with the re we export.
|
||
|
import sys
|
||
|
import types
|
||
|
import copy
|
||
|
try:
|
||
|
import collections.abc as collections_abc
|
||
|
except ImportError:
|
||
|
import collections as collections_abc # Fallback for PY3.2.
|
||
|
|
||
|
|
||
|
# Please keep __all__ alphabetized within each category.
|
||
|
__all__ = [
|
||
|
# Super-special typing primitives.
|
||
|
'Any',
|
||
|
'Callable',
|
||
|
'ClassVar',
|
||
|
'Final',
|
||
|
'Generic',
|
||
|
'Literal',
|
||
|
'Optional',
|
||
|
'Protocol',
|
||
|
'Tuple',
|
||
|
'Type',
|
||
|
'TypeVar',
|
||
|
'Union',
|
||
|
|
||
|
# ABCs (from collections.abc).
|
||
|
'AbstractSet', # collections.abc.Set.
|
||
|
'GenericMeta', # subclass of abc.ABCMeta and a metaclass
|
||
|
# for 'Generic' and ABCs below.
|
||
|
'ByteString',
|
||
|
'Container',
|
||
|
'ContextManager',
|
||
|
'Hashable',
|
||
|
'ItemsView',
|
||
|
'Iterable',
|
||
|
'Iterator',
|
||
|
'KeysView',
|
||
|
'Mapping',
|
||
|
'MappingView',
|
||
|
'MutableMapping',
|
||
|
'MutableSequence',
|
||
|
'MutableSet',
|
||
|
'Sequence',
|
||
|
'Sized',
|
||
|
'ValuesView',
|
||
|
|
||
|
# Structural checks, a.k.a. protocols.
|
||
|
'Reversible',
|
||
|
'SupportsAbs',
|
||
|
'SupportsComplex',
|
||
|
'SupportsFloat',
|
||
|
'SupportsIndex',
|
||
|
'SupportsInt',
|
||
|
|
||
|
# Concrete collection types.
|
||
|
'Counter',
|
||
|
'Deque',
|
||
|
'Dict',
|
||
|
'DefaultDict',
|
||
|
'List',
|
||
|
'Set',
|
||
|
'FrozenSet',
|
||
|
'NamedTuple', # Not really a type.
|
||
|
'TypedDict', # Not really a type.
|
||
|
'Generator',
|
||
|
|
||
|
# One-off things.
|
||
|
'AnyStr',
|
||
|
'cast',
|
||
|
'final',
|
||
|
'get_type_hints',
|
||
|
'NewType',
|
||
|
'no_type_check',
|
||
|
'no_type_check_decorator',
|
||
|
'NoReturn',
|
||
|
'overload',
|
||
|
'runtime_checkable',
|
||
|
'Text',
|
||
|
'TYPE_CHECKING',
|
||
|
]
|
||
|
|
||
|
# The pseudo-submodules 're' and 'io' are part of the public
|
||
|
# namespace, but excluded from __all__ because they might stomp on
|
||
|
# legitimate imports of those modules.
|
||
|
|
||
|
|
||
|
def _qualname(x):
|
||
|
if sys.version_info[:2] >= (3, 3):
|
||
|
return x.__qualname__
|
||
|
else:
|
||
|
# Fall back to just name.
|
||
|
return x.__name__
|
||
|
|
||
|
|
||
|
def _trim_name(nm):
|
||
|
whitelist = ('_TypeAlias', '_ForwardRef', '_TypingBase', '_FinalTypingBase')
|
||
|
if nm.startswith('_') and nm not in whitelist:
|
||
|
nm = nm[1:]
|
||
|
return nm
|
||
|
|
||
|
|
||
|
class TypingMeta(type):
|
||
|
"""Metaclass for most types defined in typing module
|
||
|
(not a part of public API).
|
||
|
|
||
|
This also defines a dummy constructor (all the work for most typing
|
||
|
constructs is done in __new__) and a nicer repr().
|
||
|
"""
|
||
|
|
||
|
_is_protocol = False
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
return super(TypingMeta, cls).__new__(cls, str(name), bases, namespace)
|
||
|
|
||
|
@classmethod
|
||
|
def assert_no_subclassing(cls, bases):
|
||
|
for base in bases:
|
||
|
if isinstance(base, cls):
|
||
|
raise TypeError("Cannot subclass %s" %
|
||
|
(', '.join(map(_type_repr, bases)) or '()'))
|
||
|
|
||
|
def __init__(self, *args, **kwds):
|
||
|
pass
|
||
|
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
"""Override this in subclasses to interpret forward references.
|
||
|
|
||
|
For example, List['C'] is internally stored as
|
||
|
List[_ForwardRef('C')], which should evaluate to List[C],
|
||
|
where C is an object found in globalns or localns (searching
|
||
|
localns first, of course).
|
||
|
"""
|
||
|
return self
|
||
|
|
||
|
def _get_type_vars(self, tvars):
|
||
|
pass
|
||
|
|
||
|
def __repr__(self):
|
||
|
qname = _trim_name(_qualname(self))
|
||
|
return '%s.%s' % (self.__module__, qname)
|
||
|
|
||
|
|
||
|
class _TypingBase(object):
|
||
|
"""Internal indicator of special typing constructs."""
|
||
|
__metaclass__ = TypingMeta
|
||
|
__slots__ = ('__weakref__',)
|
||
|
|
||
|
def __init__(self, *args, **kwds):
|
||
|
pass
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
"""Constructor.
|
||
|
|
||
|
This only exists to give a better error message in case
|
||
|
someone tries to subclass a special typing object (not a good idea).
|
||
|
"""
|
||
|
if (len(args) == 3 and
|
||
|
isinstance(args[0], str) and
|
||
|
isinstance(args[1], tuple)):
|
||
|
# Close enough.
|
||
|
raise TypeError("Cannot subclass %r" % cls)
|
||
|
return super(_TypingBase, cls).__new__(cls)
|
||
|
|
||
|
# Things that are not classes also need these.
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
return self
|
||
|
|
||
|
def _get_type_vars(self, tvars):
|
||
|
pass
|
||
|
|
||
|
def __repr__(self):
|
||
|
cls = type(self)
|
||
|
qname = _trim_name(_qualname(cls))
|
||
|
return '%s.%s' % (cls.__module__, qname)
|
||
|
|
||
|
def __call__(self, *args, **kwds):
|
||
|
raise TypeError("Cannot instantiate %r" % type(self))
|
||
|
|
||
|
|
||
|
class _FinalTypingBase(_TypingBase):
|
||
|
"""Internal mix-in class to prevent instantiation.
|
||
|
|
||
|
Prevents instantiation unless _root=True is given in class call.
|
||
|
It is used to create pseudo-singleton instances Any, Union, Optional, etc.
|
||
|
"""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
self = super(_FinalTypingBase, cls).__new__(cls, *args, **kwds)
|
||
|
if '_root' in kwds and kwds['_root'] is True:
|
||
|
return self
|
||
|
raise TypeError("Cannot instantiate %r" % cls)
|
||
|
|
||
|
def __reduce__(self):
|
||
|
return _trim_name(type(self).__name__)
|
||
|
|
||
|
|
||
|
class _ForwardRef(_TypingBase):
|
||
|
"""Internal wrapper to hold a forward reference."""
|
||
|
|
||
|
__slots__ = ('__forward_arg__', '__forward_code__',
|
||
|
'__forward_evaluated__', '__forward_value__')
|
||
|
|
||
|
def __init__(self, arg):
|
||
|
super(_ForwardRef, self).__init__(arg)
|
||
|
if not isinstance(arg, basestring):
|
||
|
raise TypeError('Forward reference must be a string -- got %r' % (arg,))
|
||
|
try:
|
||
|
code = compile(arg, '<string>', 'eval')
|
||
|
except SyntaxError:
|
||
|
raise SyntaxError('Forward reference must be an expression -- got %r' %
|
||
|
(arg,))
|
||
|
self.__forward_arg__ = arg
|
||
|
self.__forward_code__ = code
|
||
|
self.__forward_evaluated__ = False
|
||
|
self.__forward_value__ = None
|
||
|
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
if not self.__forward_evaluated__ or localns is not globalns:
|
||
|
if globalns is None and localns is None:
|
||
|
globalns = localns = {}
|
||
|
elif globalns is None:
|
||
|
globalns = localns
|
||
|
elif localns is None:
|
||
|
localns = globalns
|
||
|
self.__forward_value__ = _type_check(
|
||
|
eval(self.__forward_code__, globalns, localns),
|
||
|
"Forward references must evaluate to types.")
|
||
|
self.__forward_evaluated__ = True
|
||
|
return self.__forward_value__
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, _ForwardRef):
|
||
|
return NotImplemented
|
||
|
return (self.__forward_arg__ == other.__forward_arg__ and
|
||
|
self.__forward_value__ == other.__forward_value__)
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash((self.__forward_arg__, self.__forward_value__))
|
||
|
|
||
|
def __instancecheck__(self, obj):
|
||
|
raise TypeError("Forward references cannot be used with isinstance().")
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
raise TypeError("Forward references cannot be used with issubclass().")
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '_ForwardRef(%r)' % (self.__forward_arg__,)
|
||
|
|
||
|
|
||
|
class _TypeAlias(_TypingBase):
|
||
|
"""Internal helper class for defining generic variants of concrete types.
|
||
|
|
||
|
Note that this is not a type; let's call it a pseudo-type. It cannot
|
||
|
be used in instance and subclass checks in parameterized form, i.e.
|
||
|
``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning
|
||
|
``False``.
|
||
|
"""
|
||
|
|
||
|
__slots__ = ('name', 'type_var', 'impl_type', 'type_checker')
|
||
|
|
||
|
def __init__(self, name, type_var, impl_type, type_checker):
|
||
|
"""Initializer.
|
||
|
|
||
|
Args:
|
||
|
name: The name, e.g. 'Pattern'.
|
||
|
type_var: The type parameter, e.g. AnyStr, or the
|
||
|
specific type, e.g. str.
|
||
|
impl_type: The implementation type.
|
||
|
type_checker: Function that takes an impl_type instance.
|
||
|
and returns a value that should be a type_var instance.
|
||
|
"""
|
||
|
assert isinstance(name, basestring), repr(name)
|
||
|
assert isinstance(impl_type, type), repr(impl_type)
|
||
|
assert not isinstance(impl_type, TypingMeta), repr(impl_type)
|
||
|
assert isinstance(type_var, (type, _TypingBase)), repr(type_var)
|
||
|
self.name = name
|
||
|
self.type_var = type_var
|
||
|
self.impl_type = impl_type
|
||
|
self.type_checker = type_checker
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "%s[%s]" % (self.name, _type_repr(self.type_var))
|
||
|
|
||
|
def __getitem__(self, parameter):
|
||
|
if not isinstance(self.type_var, TypeVar):
|
||
|
raise TypeError("%s cannot be further parameterized." % self)
|
||
|
if self.type_var.__constraints__ and isinstance(parameter, type):
|
||
|
if not issubclass(parameter, self.type_var.__constraints__):
|
||
|
raise TypeError("%s is not a valid substitution for %s." %
|
||
|
(parameter, self.type_var))
|
||
|
if isinstance(parameter, TypeVar) and parameter is not self.type_var:
|
||
|
raise TypeError("%s cannot be re-parameterized." % self)
|
||
|
return self.__class__(self.name, parameter,
|
||
|
self.impl_type, self.type_checker)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, _TypeAlias):
|
||
|
return NotImplemented
|
||
|
return self.name == other.name and self.type_var == other.type_var
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash((self.name, self.type_var))
|
||
|
|
||
|
def __instancecheck__(self, obj):
|
||
|
if not isinstance(self.type_var, TypeVar):
|
||
|
raise TypeError("Parameterized type aliases cannot be used "
|
||
|
"with isinstance().")
|
||
|
return isinstance(obj, self.impl_type)
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
if not isinstance(self.type_var, TypeVar):
|
||
|
raise TypeError("Parameterized type aliases cannot be used "
|
||
|
"with issubclass().")
|
||
|
return issubclass(cls, self.impl_type)
|
||
|
|
||
|
|
||
|
def _get_type_vars(types, tvars):
|
||
|
for t in types:
|
||
|
if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
|
||
|
t._get_type_vars(tvars)
|
||
|
|
||
|
|
||
|
def _type_vars(types):
|
||
|
tvars = []
|
||
|
_get_type_vars(types, tvars)
|
||
|
return tuple(tvars)
|
||
|
|
||
|
|
||
|
def _eval_type(t, globalns, localns):
|
||
|
if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
|
||
|
return t._eval_type(globalns, localns)
|
||
|
return t
|
||
|
|
||
|
|
||
|
def _type_check(arg, msg):
|
||
|
"""Check that the argument is a type, and return it (internal helper).
|
||
|
|
||
|
As a special case, accept None and return type(None) instead.
|
||
|
Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
|
||
|
|
||
|
The msg argument is a human-readable error message, e.g.
|
||
|
|
||
|
"Union[arg, ...]: arg should be a type."
|
||
|
|
||
|
We append the repr() of the actual value (truncated to 100 chars).
|
||
|
"""
|
||
|
if arg is None:
|
||
|
return type(None)
|
||
|
if isinstance(arg, basestring):
|
||
|
arg = _ForwardRef(arg)
|
||
|
if (
|
||
|
isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or
|
||
|
not isinstance(arg, (type, _TypingBase)) and not callable(arg)
|
||
|
):
|
||
|
raise TypeError(msg + " Got %.100r." % (arg,))
|
||
|
# Bare Union etc. are not valid as type arguments
|
||
|
if (
|
||
|
type(arg).__name__ in ('_Union', '_Optional') and
|
||
|
not getattr(arg, '__origin__', None) or
|
||
|
isinstance(arg, TypingMeta) and arg._gorg in (Generic, Protocol)
|
||
|
):
|
||
|
raise TypeError("Plain %s is not valid as type argument" % arg)
|
||
|
return arg
|
||
|
|
||
|
|
||
|
def _type_repr(obj):
|
||
|
"""Return the repr() of an object, special-casing types (internal helper).
|
||
|
|
||
|
If obj is a type, we return a shorter version than the default
|
||
|
type.__repr__, based on the module and qualified name, which is
|
||
|
typically enough to uniquely identify a type. For everything
|
||
|
else, we fall back on repr(obj).
|
||
|
"""
|
||
|
if isinstance(obj, type) and not isinstance(obj, TypingMeta):
|
||
|
if obj.__module__ == '__builtin__':
|
||
|
return _qualname(obj)
|
||
|
return '%s.%s' % (obj.__module__, _qualname(obj))
|
||
|
if obj is Ellipsis:
|
||
|
return '...'
|
||
|
if isinstance(obj, types.FunctionType):
|
||
|
return obj.__name__
|
||
|
return repr(obj)
|
||
|
|
||
|
|
||
|
class ClassVarMeta(TypingMeta):
|
||
|
"""Metaclass for _ClassVar"""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
self = super(ClassVarMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
return self
|
||
|
|
||
|
|
||
|
class _ClassVar(_FinalTypingBase):
|
||
|
"""Special type construct to mark class variables.
|
||
|
|
||
|
An annotation wrapped in ClassVar indicates that a given
|
||
|
attribute is intended to be used as a class variable and
|
||
|
should not be set on instances of that class. Usage::
|
||
|
|
||
|
class Starship:
|
||
|
stats = {} # type: ClassVar[Dict[str, int]] # class variable
|
||
|
damage = 10 # type: int # instance variable
|
||
|
|
||
|
ClassVar accepts only types and cannot be further subscribed.
|
||
|
|
||
|
Note that ClassVar is not a class itself, and should not
|
||
|
be used with isinstance() or issubclass().
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = ClassVarMeta
|
||
|
__slots__ = ('__type__',)
|
||
|
|
||
|
def __init__(self, tp=None, _root=False):
|
||
|
self.__type__ = tp
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
cls = type(self)
|
||
|
if self.__type__ is None:
|
||
|
return cls(_type_check(item,
|
||
|
'{} accepts only types.'.format(cls.__name__[1:])),
|
||
|
_root=True)
|
||
|
raise TypeError('{} cannot be further subscripted'
|
||
|
.format(cls.__name__[1:]))
|
||
|
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
return type(self)(_eval_type(self.__type__, globalns, localns),
|
||
|
_root=True)
|
||
|
|
||
|
def __repr__(self):
|
||
|
r = super(_ClassVar, self).__repr__()
|
||
|
if self.__type__ is not None:
|
||
|
r += '[{}]'.format(_type_repr(self.__type__))
|
||
|
return r
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash((type(self).__name__, self.__type__))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, _ClassVar):
|
||
|
return NotImplemented
|
||
|
if self.__type__ is not None:
|
||
|
return self.__type__ == other.__type__
|
||
|
return self is other
|
||
|
|
||
|
|
||
|
ClassVar = _ClassVar(_root=True)
|
||
|
|
||
|
|
||
|
class _FinalMeta(TypingMeta):
|
||
|
"""Metaclass for _Final"""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
self = super(_FinalMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
return self
|
||
|
|
||
|
|
||
|
class _Final(_FinalTypingBase):
|
||
|
"""A special typing construct to indicate that a name
|
||
|
cannot be re-assigned or overridden in a subclass.
|
||
|
For example:
|
||
|
|
||
|
MAX_SIZE: Final = 9000
|
||
|
MAX_SIZE += 1 # Error reported by type checker
|
||
|
|
||
|
class Connection:
|
||
|
TIMEOUT: Final[int] = 10
|
||
|
class FastConnector(Connection):
|
||
|
TIMEOUT = 1 # Error reported by type checker
|
||
|
|
||
|
There is no runtime checking of these properties.
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = _FinalMeta
|
||
|
__slots__ = ('__type__',)
|
||
|
|
||
|
def __init__(self, tp=None, **kwds):
|
||
|
self.__type__ = tp
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
cls = type(self)
|
||
|
if self.__type__ is None:
|
||
|
return cls(_type_check(item,
|
||
|
'{} accepts only single type.'.format(cls.__name__[1:])),
|
||
|
_root=True)
|
||
|
raise TypeError('{} cannot be further subscripted'
|
||
|
.format(cls.__name__[1:]))
|
||
|
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
new_tp = _eval_type(self.__type__, globalns, localns)
|
||
|
if new_tp == self.__type__:
|
||
|
return self
|
||
|
return type(self)(new_tp, _root=True)
|
||
|
|
||
|
def __repr__(self):
|
||
|
r = super(_Final, self).__repr__()
|
||
|
if self.__type__ is not None:
|
||
|
r += '[{}]'.format(_type_repr(self.__type__))
|
||
|
return r
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash((type(self).__name__, self.__type__))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, _Final):
|
||
|
return NotImplemented
|
||
|
if self.__type__ is not None:
|
||
|
return self.__type__ == other.__type__
|
||
|
return self is other
|
||
|
|
||
|
|
||
|
Final = _Final(_root=True)
|
||
|
|
||
|
|
||
|
def final(f):
|
||
|
"""This decorator can be used to indicate to type checkers that
|
||
|
the decorated method cannot be overridden, and decorated class
|
||
|
cannot be subclassed. For example:
|
||
|
|
||
|
class Base:
|
||
|
@final
|
||
|
def done(self) -> None:
|
||
|
...
|
||
|
class Sub(Base):
|
||
|
def done(self) -> None: # Error reported by type checker
|
||
|
...
|
||
|
@final
|
||
|
class Leaf:
|
||
|
...
|
||
|
class Other(Leaf): # Error reported by type checker
|
||
|
...
|
||
|
|
||
|
There is no runtime checking of these properties.
|
||
|
"""
|
||
|
return f
|
||
|
|
||
|
|
||
|
class _LiteralMeta(TypingMeta):
|
||
|
"""Metaclass for _Literal"""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
self = super(_LiteralMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
return self
|
||
|
|
||
|
|
||
|
class _Literal(_FinalTypingBase):
|
||
|
"""A type that can be used to indicate to type checkers that the
|
||
|
corresponding value has a value literally equivalent to the
|
||
|
provided parameter. For example:
|
||
|
|
||
|
var: Literal[4] = 4
|
||
|
|
||
|
The type checker understands that 'var' is literally equal to the
|
||
|
value 4 and no other value.
|
||
|
|
||
|
Literal[...] cannot be subclassed. There is no runtime checking
|
||
|
verifying that the parameter is actually a value instead of a type.
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = _LiteralMeta
|
||
|
__slots__ = ('__values__',)
|
||
|
|
||
|
def __init__(self, values=None, **kwds):
|
||
|
self.__values__ = values
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
cls = type(self)
|
||
|
if self.__values__ is None:
|
||
|
if not isinstance(item, tuple):
|
||
|
item = (item,)
|
||
|
return cls(values=item,
|
||
|
_root=True)
|
||
|
raise TypeError('{} cannot be further subscripted'
|
||
|
.format(cls.__name__[1:]))
|
||
|
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
return self
|
||
|
|
||
|
def __repr__(self):
|
||
|
r = super(_Literal, self).__repr__()
|
||
|
if self.__values__ is not None:
|
||
|
r += '[{}]'.format(', '.join(map(_type_repr, self.__values__)))
|
||
|
return r
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash((type(self).__name__, self.__values__))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, _Literal):
|
||
|
return NotImplemented
|
||
|
if self.__values__ is not None:
|
||
|
return self.__values__ == other.__values__
|
||
|
return self is other
|
||
|
|
||
|
|
||
|
Literal = _Literal(_root=True)
|
||
|
|
||
|
|
||
|
class AnyMeta(TypingMeta):
|
||
|
"""Metaclass for Any."""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
self = super(AnyMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
return self
|
||
|
|
||
|
|
||
|
class _Any(_FinalTypingBase):
|
||
|
"""Special type indicating an unconstrained type.
|
||
|
|
||
|
- Any is compatible with every type.
|
||
|
- Any assumed to have all methods.
|
||
|
- All values assumed to be instances of Any.
|
||
|
|
||
|
Note that all the above statements are true from the point of view of
|
||
|
static type checkers. At runtime, Any should not be used with instance
|
||
|
or class checks.
|
||
|
"""
|
||
|
__metaclass__ = AnyMeta
|
||
|
__slots__ = ()
|
||
|
|
||
|
def __instancecheck__(self, obj):
|
||
|
raise TypeError("Any cannot be used with isinstance().")
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
raise TypeError("Any cannot be used with issubclass().")
|
||
|
|
||
|
|
||
|
Any = _Any(_root=True)
|
||
|
|
||
|
|
||
|
class NoReturnMeta(TypingMeta):
|
||
|
"""Metaclass for NoReturn."""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
self = super(NoReturnMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
return self
|
||
|
|
||
|
|
||
|
class _NoReturn(_FinalTypingBase):
|
||
|
"""Special type indicating functions that never return.
|
||
|
Example::
|
||
|
|
||
|
from typing import NoReturn
|
||
|
|
||
|
def stop() -> NoReturn:
|
||
|
raise Exception('no way')
|
||
|
|
||
|
This type is invalid in other positions, e.g., ``List[NoReturn]``
|
||
|
will fail in static type checkers.
|
||
|
"""
|
||
|
__metaclass__ = NoReturnMeta
|
||
|
__slots__ = ()
|
||
|
|
||
|
def __instancecheck__(self, obj):
|
||
|
raise TypeError("NoReturn cannot be used with isinstance().")
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
raise TypeError("NoReturn cannot be used with issubclass().")
|
||
|
|
||
|
|
||
|
NoReturn = _NoReturn(_root=True)
|
||
|
|
||
|
|
||
|
class TypeVarMeta(TypingMeta):
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
return super(TypeVarMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
|
||
|
|
||
|
class TypeVar(_TypingBase):
|
||
|
"""Type variable.
|
||
|
|
||
|
Usage::
|
||
|
|
||
|
T = TypeVar('T') # Can be anything
|
||
|
A = TypeVar('A', str, bytes) # Must be str or bytes
|
||
|
|
||
|
Type variables exist primarily for the benefit of static type
|
||
|
checkers. They serve as the parameters for generic types as well
|
||
|
as for generic function definitions. See class Generic for more
|
||
|
information on generic types. Generic functions work as follows:
|
||
|
|
||
|
def repeat(x: T, n: int) -> List[T]:
|
||
|
'''Return a list containing n references to x.'''
|
||
|
return [x]*n
|
||
|
|
||
|
def longest(x: A, y: A) -> A:
|
||
|
'''Return the longest of two strings.'''
|
||
|
return x if len(x) >= len(y) else y
|
||
|
|
||
|
The latter example's signature is essentially the overloading
|
||
|
of (str, str) -> str and (bytes, bytes) -> bytes. Also note
|
||
|
that if the arguments are instances of some subclass of str,
|
||
|
the return type is still plain str.
|
||
|
|
||
|
At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.
|
||
|
|
||
|
Type variables defined with covariant=True or contravariant=True
|
||
|
can be used do declare covariant or contravariant generic types.
|
||
|
See PEP 484 for more details. By default generic types are invariant
|
||
|
in all type variables.
|
||
|
|
||
|
Type variables can be introspected. e.g.:
|
||
|
|
||
|
T.__name__ == 'T'
|
||
|
T.__constraints__ == ()
|
||
|
T.__covariant__ == False
|
||
|
T.__contravariant__ = False
|
||
|
A.__constraints__ == (str, bytes)
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = TypeVarMeta
|
||
|
__slots__ = ('__name__', '__bound__', '__constraints__',
|
||
|
'__covariant__', '__contravariant__')
|
||
|
|
||
|
def __init__(self, name, *constraints, **kwargs):
|
||
|
super(TypeVar, self).__init__(name, *constraints, **kwargs)
|
||
|
bound = kwargs.get('bound', None)
|
||
|
covariant = kwargs.get('covariant', False)
|
||
|
contravariant = kwargs.get('contravariant', False)
|
||
|
self.__name__ = name
|
||
|
if covariant and contravariant:
|
||
|
raise ValueError("Bivariant types are not supported.")
|
||
|
self.__covariant__ = bool(covariant)
|
||
|
self.__contravariant__ = bool(contravariant)
|
||
|
if constraints and bound is not None:
|
||
|
raise TypeError("Constraints cannot be combined with bound=...")
|
||
|
if constraints and len(constraints) == 1:
|
||
|
raise TypeError("A single constraint is not allowed")
|
||
|
msg = "TypeVar(name, constraint, ...): constraints must be types."
|
||
|
self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
|
||
|
if bound:
|
||
|
self.__bound__ = _type_check(bound, "Bound must be a type.")
|
||
|
else:
|
||
|
self.__bound__ = None
|
||
|
|
||
|
def _get_type_vars(self, tvars):
|
||
|
if self not in tvars:
|
||
|
tvars.append(self)
|
||
|
|
||
|
def __repr__(self):
|
||
|
if self.__covariant__:
|
||
|
prefix = '+'
|
||
|
elif self.__contravariant__:
|
||
|
prefix = '-'
|
||
|
else:
|
||
|
prefix = '~'
|
||
|
return prefix + self.__name__
|
||
|
|
||
|
def __instancecheck__(self, instance):
|
||
|
raise TypeError("Type variables cannot be used with isinstance().")
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
raise TypeError("Type variables cannot be used with issubclass().")
|
||
|
|
||
|
|
||
|
# Some unconstrained type variables. These are used by the container types.
|
||
|
# (These are not for export.)
|
||
|
T = TypeVar('T') # Any type.
|
||
|
KT = TypeVar('KT') # Key type.
|
||
|
VT = TypeVar('VT') # Value type.
|
||
|
T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
|
||
|
V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
|
||
|
VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
|
||
|
T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
|
||
|
|
||
|
# A useful type variable with constraints. This represents string types.
|
||
|
# (This one *is* for export!)
|
||
|
AnyStr = TypeVar('AnyStr', bytes, unicode)
|
||
|
|
||
|
|
||
|
def _replace_arg(arg, tvars, args):
|
||
|
"""An internal helper function: replace arg if it is a type variable
|
||
|
found in tvars with corresponding substitution from args or
|
||
|
with corresponding substitution sub-tree if arg is a generic type.
|
||
|
"""
|
||
|
|
||
|
if tvars is None:
|
||
|
tvars = []
|
||
|
if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)):
|
||
|
return arg._subs_tree(tvars, args)
|
||
|
if isinstance(arg, TypeVar):
|
||
|
for i, tvar in enumerate(tvars):
|
||
|
if arg == tvar:
|
||
|
return args[i]
|
||
|
return arg
|
||
|
|
||
|
|
||
|
# Special typing constructs Union, Optional, Generic, Callable and Tuple
|
||
|
# use three special attributes for internal bookkeeping of generic types:
|
||
|
# * __parameters__ is a tuple of unique free type parameters of a generic
|
||
|
# type, for example, Dict[T, T].__parameters__ == (T,);
|
||
|
# * __origin__ keeps a reference to a type that was subscripted,
|
||
|
# e.g., Union[T, int].__origin__ == Union;
|
||
|
# * __args__ is a tuple of all arguments used in subscripting,
|
||
|
# e.g., Dict[T, int].__args__ == (T, int).
|
||
|
|
||
|
|
||
|
def _subs_tree(cls, tvars=None, args=None):
|
||
|
"""An internal helper function: calculate substitution tree
|
||
|
for generic cls after replacing its type parameters with
|
||
|
substitutions in tvars -> args (if any).
|
||
|
Repeat the same following __origin__'s.
|
||
|
|
||
|
Return a list of arguments with all possible substitutions
|
||
|
performed. Arguments that are generic classes themselves are represented
|
||
|
as tuples (so that no new classes are created by this function).
|
||
|
For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)]
|
||
|
"""
|
||
|
|
||
|
if cls.__origin__ is None:
|
||
|
return cls
|
||
|
# Make of chain of origins (i.e. cls -> cls.__origin__)
|
||
|
current = cls.__origin__
|
||
|
orig_chain = []
|
||
|
while current.__origin__ is not None:
|
||
|
orig_chain.append(current)
|
||
|
current = current.__origin__
|
||
|
# Replace type variables in __args__ if asked ...
|
||
|
tree_args = []
|
||
|
for arg in cls.__args__:
|
||
|
tree_args.append(_replace_arg(arg, tvars, args))
|
||
|
# ... then continue replacing down the origin chain.
|
||
|
for ocls in orig_chain:
|
||
|
new_tree_args = []
|
||
|
for arg in ocls.__args__:
|
||
|
new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args))
|
||
|
tree_args = new_tree_args
|
||
|
return tree_args
|
||
|
|
||
|
|
||
|
def _remove_dups_flatten(parameters):
|
||
|
"""An internal helper for Union creation and substitution: flatten Union's
|
||
|
among parameters, then remove duplicates and strict subclasses.
|
||
|
"""
|
||
|
|
||
|
# Flatten out Union[Union[...], ...].
|
||
|
params = []
|
||
|
for p in parameters:
|
||
|
if isinstance(p, _Union) and p.__origin__ is Union:
|
||
|
params.extend(p.__args__)
|
||
|
elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
|
||
|
params.extend(p[1:])
|
||
|
else:
|
||
|
params.append(p)
|
||
|
# Weed out strict duplicates, preserving the first of each occurrence.
|
||
|
all_params = set(params)
|
||
|
if len(all_params) < len(params):
|
||
|
new_params = []
|
||
|
for t in params:
|
||
|
if t in all_params:
|
||
|
new_params.append(t)
|
||
|
all_params.remove(t)
|
||
|
params = new_params
|
||
|
assert not all_params, all_params
|
||
|
# Weed out subclasses.
|
||
|
# E.g. Union[int, Employee, Manager] == Union[int, Employee].
|
||
|
# If object is present it will be sole survivor among proper classes.
|
||
|
# Never discard type variables.
|
||
|
# (In particular, Union[str, AnyStr] != AnyStr.)
|
||
|
all_params = set(params)
|
||
|
for t1 in params:
|
||
|
if not isinstance(t1, type):
|
||
|
continue
|
||
|
if any(isinstance(t2, type) and issubclass(t1, t2)
|
||
|
for t2 in all_params - {t1}
|
||
|
if not (isinstance(t2, GenericMeta) and
|
||
|
t2.__origin__ is not None)):
|
||
|
all_params.remove(t1)
|
||
|
return tuple(t for t in params if t in all_params)
|
||
|
|
||
|
|
||
|
def _check_generic(cls, parameters):
|
||
|
# Check correct count for parameters of a generic cls (internal helper).
|
||
|
if not cls.__parameters__:
|
||
|
raise TypeError("%s is not a generic class" % repr(cls))
|
||
|
alen = len(parameters)
|
||
|
elen = len(cls.__parameters__)
|
||
|
if alen != elen:
|
||
|
raise TypeError("Too %s parameters for %s; actual %s, expected %s" %
|
||
|
("many" if alen > elen else "few", repr(cls), alen, elen))
|
||
|
|
||
|
|
||
|
_cleanups = []
|
||
|
|
||
|
|
||
|
def _tp_cache(func):
|
||
|
maxsize = 128
|
||
|
cache = {}
|
||
|
_cleanups.append(cache.clear)
|
||
|
|
||
|
@functools.wraps(func)
|
||
|
def inner(*args):
|
||
|
key = args
|
||
|
try:
|
||
|
return cache[key]
|
||
|
except TypeError:
|
||
|
# Assume it's an unhashable argument.
|
||
|
return func(*args)
|
||
|
except KeyError:
|
||
|
value = func(*args)
|
||
|
if len(cache) >= maxsize:
|
||
|
# If the cache grows too much, just start over.
|
||
|
cache.clear()
|
||
|
cache[key] = value
|
||
|
return value
|
||
|
|
||
|
return inner
|
||
|
|
||
|
|
||
|
class UnionMeta(TypingMeta):
|
||
|
"""Metaclass for Union."""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
return super(UnionMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
|
||
|
|
||
|
class _Union(_FinalTypingBase):
|
||
|
"""Union type; Union[X, Y] means either X or Y.
|
||
|
|
||
|
To define a union, use e.g. Union[int, str]. Details:
|
||
|
|
||
|
- The arguments must be types and there must be at least one.
|
||
|
|
||
|
- None as an argument is a special case and is replaced by
|
||
|
type(None).
|
||
|
|
||
|
- Unions of unions are flattened, e.g.::
|
||
|
|
||
|
Union[Union[int, str], float] == Union[int, str, float]
|
||
|
|
||
|
- Unions of a single argument vanish, e.g.::
|
||
|
|
||
|
Union[int] == int # The constructor actually returns int
|
||
|
|
||
|
- Redundant arguments are skipped, e.g.::
|
||
|
|
||
|
Union[int, str, int] == Union[int, str]
|
||
|
|
||
|
- When comparing unions, the argument order is ignored, e.g.::
|
||
|
|
||
|
Union[int, str] == Union[str, int]
|
||
|
|
||
|
- When two arguments have a subclass relationship, the least
|
||
|
derived argument is kept, e.g.::
|
||
|
|
||
|
class Employee: pass
|
||
|
class Manager(Employee): pass
|
||
|
Union[int, Employee, Manager] == Union[int, Employee]
|
||
|
Union[Manager, int, Employee] == Union[int, Employee]
|
||
|
Union[Employee, Manager] == Employee
|
||
|
|
||
|
- Similar for object::
|
||
|
|
||
|
Union[int, object] == object
|
||
|
|
||
|
- You cannot subclass or instantiate a union.
|
||
|
|
||
|
- You can use Optional[X] as a shorthand for Union[X, None].
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = UnionMeta
|
||
|
__slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__')
|
||
|
|
||
|
def __new__(cls, parameters=None, origin=None, *args, **kwds):
|
||
|
self = super(_Union, cls).__new__(cls, parameters, origin, *args, **kwds)
|
||
|
if origin is None:
|
||
|
self.__parameters__ = None
|
||
|
self.__args__ = None
|
||
|
self.__origin__ = None
|
||
|
self.__tree_hash__ = hash(frozenset(('Union',)))
|
||
|
return self
|
||
|
if not isinstance(parameters, tuple):
|
||
|
raise TypeError("Expected parameters=<tuple>")
|
||
|
if origin is Union:
|
||
|
parameters = _remove_dups_flatten(parameters)
|
||
|
# It's not a union if there's only one type left.
|
||
|
if len(parameters) == 1:
|
||
|
return parameters[0]
|
||
|
self.__parameters__ = _type_vars(parameters)
|
||
|
self.__args__ = parameters
|
||
|
self.__origin__ = origin
|
||
|
# Pre-calculate the __hash__ on instantiation.
|
||
|
# This improves speed for complex substitutions.
|
||
|
subs_tree = self._subs_tree()
|
||
|
if isinstance(subs_tree, tuple):
|
||
|
self.__tree_hash__ = hash(frozenset(subs_tree))
|
||
|
else:
|
||
|
self.__tree_hash__ = hash(subs_tree)
|
||
|
return self
|
||
|
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
if self.__args__ is None:
|
||
|
return self
|
||
|
ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__)
|
||
|
ev_origin = _eval_type(self.__origin__, globalns, localns)
|
||
|
if ev_args == self.__args__ and ev_origin == self.__origin__:
|
||
|
# Everything is already evaluated.
|
||
|
return self
|
||
|
return self.__class__(ev_args, ev_origin, _root=True)
|
||
|
|
||
|
def _get_type_vars(self, tvars):
|
||
|
if self.__origin__ and self.__parameters__:
|
||
|
_get_type_vars(self.__parameters__, tvars)
|
||
|
|
||
|
def __repr__(self):
|
||
|
if self.__origin__ is None:
|
||
|
return super(_Union, self).__repr__()
|
||
|
tree = self._subs_tree()
|
||
|
if not isinstance(tree, tuple):
|
||
|
return repr(tree)
|
||
|
return tree[0]._tree_repr(tree)
|
||
|
|
||
|
def _tree_repr(self, tree):
|
||
|
arg_list = []
|
||
|
for arg in tree[1:]:
|
||
|
if not isinstance(arg, tuple):
|
||
|
arg_list.append(_type_repr(arg))
|
||
|
else:
|
||
|
arg_list.append(arg[0]._tree_repr(arg))
|
||
|
return super(_Union, self).__repr__() + '[%s]' % ', '.join(arg_list)
|
||
|
|
||
|
@_tp_cache
|
||
|
def __getitem__(self, parameters):
|
||
|
if parameters == ():
|
||
|
raise TypeError("Cannot take a Union of no types.")
|
||
|
if not isinstance(parameters, tuple):
|
||
|
parameters = (parameters,)
|
||
|
if self.__origin__ is None:
|
||
|
msg = "Union[arg, ...]: each arg must be a type."
|
||
|
else:
|
||
|
msg = "Parameters to generic types must be types."
|
||
|
parameters = tuple(_type_check(p, msg) for p in parameters)
|
||
|
if self is not Union:
|
||
|
_check_generic(self, parameters)
|
||
|
return self.__class__(parameters, origin=self, _root=True)
|
||
|
|
||
|
def _subs_tree(self, tvars=None, args=None):
|
||
|
if self is Union:
|
||
|
return Union # Nothing to substitute
|
||
|
tree_args = _subs_tree(self, tvars, args)
|
||
|
tree_args = _remove_dups_flatten(tree_args)
|
||
|
if len(tree_args) == 1:
|
||
|
return tree_args[0] # Union of a single type is that type
|
||
|
return (Union,) + tree_args
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if isinstance(other, _Union):
|
||
|
return self.__tree_hash__ == other.__tree_hash__
|
||
|
elif self is not Union:
|
||
|
return self._subs_tree() == other
|
||
|
else:
|
||
|
return self is other
|
||
|
|
||
|
def __hash__(self):
|
||
|
return self.__tree_hash__
|
||
|
|
||
|
def __instancecheck__(self, obj):
|
||
|
raise TypeError("Unions cannot be used with isinstance().")
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
raise TypeError("Unions cannot be used with issubclass().")
|
||
|
|
||
|
|
||
|
Union = _Union(_root=True)
|
||
|
|
||
|
|
||
|
class OptionalMeta(TypingMeta):
|
||
|
"""Metaclass for Optional."""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace):
|
||
|
cls.assert_no_subclassing(bases)
|
||
|
return super(OptionalMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
|
||
|
|
||
|
class _Optional(_FinalTypingBase):
|
||
|
"""Optional type.
|
||
|
|
||
|
Optional[X] is equivalent to Union[X, None].
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = OptionalMeta
|
||
|
__slots__ = ()
|
||
|
|
||
|
@_tp_cache
|
||
|
def __getitem__(self, arg):
|
||
|
arg = _type_check(arg, "Optional[t] requires a single type.")
|
||
|
return Union[arg, type(None)]
|
||
|
|
||
|
|
||
|
Optional = _Optional(_root=True)
|
||
|
|
||
|
|
||
|
def _next_in_mro(cls):
|
||
|
"""Helper for Generic.__new__.
|
||
|
|
||
|
Returns the class after the last occurrence of Generic or
|
||
|
Generic[...] in cls.__mro__.
|
||
|
"""
|
||
|
next_in_mro = object
|
||
|
# Look for the last occurrence of Generic or Generic[...].
|
||
|
for i, c in enumerate(cls.__mro__[:-1]):
|
||
|
if isinstance(c, GenericMeta) and c._gorg is Generic:
|
||
|
next_in_mro = cls.__mro__[i + 1]
|
||
|
return next_in_mro
|
||
|
|
||
|
|
||
|
def _make_subclasshook(cls):
|
||
|
"""Construct a __subclasshook__ callable that incorporates
|
||
|
the associated __extra__ class in subclass checks performed
|
||
|
against cls.
|
||
|
"""
|
||
|
if isinstance(cls.__extra__, abc.ABCMeta):
|
||
|
# The logic mirrors that of ABCMeta.__subclasscheck__.
|
||
|
# Registered classes need not be checked here because
|
||
|
# cls and its extra share the same _abc_registry.
|
||
|
def __extrahook__(cls, subclass):
|
||
|
res = cls.__extra__.__subclasshook__(subclass)
|
||
|
if res is not NotImplemented:
|
||
|
return res
|
||
|
if cls.__extra__ in getattr(subclass, '__mro__', ()):
|
||
|
return True
|
||
|
for scls in cls.__extra__.__subclasses__():
|
||
|
if isinstance(scls, GenericMeta):
|
||
|
continue
|
||
|
if issubclass(subclass, scls):
|
||
|
return True
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
# For non-ABC extras we'll just call issubclass().
|
||
|
def __extrahook__(cls, subclass):
|
||
|
if cls.__extra__ and issubclass(subclass, cls.__extra__):
|
||
|
return True
|
||
|
return NotImplemented
|
||
|
return classmethod(__extrahook__)
|
||
|
|
||
|
|
||
|
class GenericMeta(TypingMeta, abc.ABCMeta):
|
||
|
"""Metaclass for generic types.
|
||
|
|
||
|
This is a metaclass for typing.Generic and generic ABCs defined in
|
||
|
typing module. User defined subclasses of GenericMeta can override
|
||
|
__new__ and invoke super().__new__. Note that GenericMeta.__new__
|
||
|
has strict rules on what is allowed in its bases argument:
|
||
|
* plain Generic is disallowed in bases;
|
||
|
* Generic[...] should appear in bases at most once;
|
||
|
* if Generic[...] is present, then it should list all type variables
|
||
|
that appear in other bases.
|
||
|
In addition, type of all generic bases is erased, e.g., C[int] is
|
||
|
stripped to plain C.
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, name, bases, namespace,
|
||
|
tvars=None, args=None, origin=None, extra=None, orig_bases=None):
|
||
|
"""Create a new generic class. GenericMeta.__new__ accepts
|
||
|
keyword arguments that are used for internal bookkeeping, therefore
|
||
|
an override should pass unused keyword arguments to super().
|
||
|
"""
|
||
|
if tvars is not None:
|
||
|
# Called from __getitem__() below.
|
||
|
assert origin is not None
|
||
|
assert all(isinstance(t, TypeVar) for t in tvars), tvars
|
||
|
else:
|
||
|
# Called from class statement.
|
||
|
assert tvars is None, tvars
|
||
|
assert args is None, args
|
||
|
assert origin is None, origin
|
||
|
|
||
|
# Get the full set of tvars from the bases.
|
||
|
tvars = _type_vars(bases)
|
||
|
# Look for Generic[T1, ..., Tn].
|
||
|
# If found, tvars must be a subset of it.
|
||
|
# If not found, tvars is it.
|
||
|
# Also check for and reject plain Generic,
|
||
|
# and reject multiple Generic[...].
|
||
|
gvars = None
|
||
|
for base in bases:
|
||
|
if base is Generic:
|
||
|
raise TypeError("Cannot inherit from plain Generic")
|
||
|
if (isinstance(base, GenericMeta) and
|
||
|
base.__origin__ in (Generic, Protocol)):
|
||
|
if gvars is not None:
|
||
|
raise TypeError(
|
||
|
"Cannot inherit from Generic[...] or"
|
||
|
" Protocol[...] multiple times.")
|
||
|
gvars = base.__parameters__
|
||
|
if gvars is None:
|
||
|
gvars = tvars
|
||
|
else:
|
||
|
tvarset = set(tvars)
|
||
|
gvarset = set(gvars)
|
||
|
if not tvarset <= gvarset:
|
||
|
raise TypeError(
|
||
|
"Some type variables (%s) "
|
||
|
"are not listed in %s[%s]" %
|
||
|
(", ".join(str(t) for t in tvars if t not in gvarset),
|
||
|
"Generic" if any(b.__origin__ is Generic
|
||
|
for b in bases) else "Protocol",
|
||
|
", ".join(str(g) for g in gvars)))
|
||
|
tvars = gvars
|
||
|
|
||
|
initial_bases = bases
|
||
|
if extra is None:
|
||
|
extra = namespace.get('__extra__')
|
||
|
if extra is not None and type(extra) is abc.ABCMeta and extra not in bases:
|
||
|
bases = (extra,) + bases
|
||
|
bases = tuple(b._gorg if isinstance(b, GenericMeta) else b for b in bases)
|
||
|
|
||
|
# remove bare Generic from bases if there are other generic bases
|
||
|
if any(isinstance(b, GenericMeta) and b is not Generic for b in bases):
|
||
|
bases = tuple(b for b in bases if b is not Generic)
|
||
|
namespace.update({'__origin__': origin, '__extra__': extra})
|
||
|
self = super(GenericMeta, cls).__new__(cls, name, bases, namespace)
|
||
|
super(GenericMeta, self).__setattr__('_gorg',
|
||
|
self if not origin else origin._gorg)
|
||
|
|
||
|
self.__parameters__ = tvars
|
||
|
# Be prepared that GenericMeta will be subclassed by TupleMeta
|
||
|
# and CallableMeta, those two allow ..., (), or [] in __args___.
|
||
|
self.__args__ = tuple(Ellipsis if a is _TypingEllipsis else
|
||
|
() if a is _TypingEmpty else
|
||
|
a for a in args) if args else None
|
||
|
# Speed hack (https://github.com/python/typing/issues/196).
|
||
|
self.__next_in_mro__ = _next_in_mro(self)
|
||
|
# Preserve base classes on subclassing (__bases__ are type erased now).
|
||
|
if orig_bases is None:
|
||
|
self.__orig_bases__ = initial_bases
|
||
|
|
||
|
# This allows unparameterized generic collections to be used
|
||
|
# with issubclass() and isinstance() in the same way as their
|
||
|
# collections.abc counterparts (e.g., isinstance([], Iterable)).
|
||
|
if (
|
||
|
'__subclasshook__' not in namespace and extra or
|
||
|
# allow overriding
|
||
|
getattr(self.__subclasshook__, '__name__', '') == '__extrahook__'
|
||
|
):
|
||
|
self.__subclasshook__ = _make_subclasshook(self)
|
||
|
|
||
|
if origin and hasattr(origin, '__qualname__'): # Fix for Python 3.2.
|
||
|
self.__qualname__ = origin.__qualname__
|
||
|
self.__tree_hash__ = (hash(self._subs_tree()) if origin else
|
||
|
super(GenericMeta, self).__hash__())
|
||
|
return self
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super(GenericMeta, self).__init__(*args, **kwargs)
|
||
|
if isinstance(self.__extra__, abc.ABCMeta):
|
||
|
self._abc_registry = self.__extra__._abc_registry
|
||
|
self._abc_cache = self.__extra__._abc_cache
|
||
|
elif self.__origin__ is not None:
|
||
|
self._abc_registry = self.__origin__._abc_registry
|
||
|
self._abc_cache = self.__origin__._abc_cache
|
||
|
|
||
|
# _abc_negative_cache and _abc_negative_cache_version
|
||
|
# realised as descriptors, since GenClass[t1, t2, ...] always
|
||
|
# share subclass info with GenClass.
|
||
|
# This is an important memory optimization.
|
||
|
@property
|
||
|
def _abc_negative_cache(self):
|
||
|
if isinstance(self.__extra__, abc.ABCMeta):
|
||
|
return self.__extra__._abc_negative_cache
|
||
|
return self._gorg._abc_generic_negative_cache
|
||
|
|
||
|
@_abc_negative_cache.setter
|
||
|
def _abc_negative_cache(self, value):
|
||
|
if self.__origin__ is None:
|
||
|
if isinstance(self.__extra__, abc.ABCMeta):
|
||
|
self.__extra__._abc_negative_cache = value
|
||
|
else:
|
||
|
self._abc_generic_negative_cache = value
|
||
|
|
||
|
@property
|
||
|
def _abc_negative_cache_version(self):
|
||
|
if isinstance(self.__extra__, abc.ABCMeta):
|
||
|
return self.__extra__._abc_negative_cache_version
|
||
|
return self._gorg._abc_generic_negative_cache_version
|
||
|
|
||
|
@_abc_negative_cache_version.setter
|
||
|
def _abc_negative_cache_version(self, value):
|
||
|
if self.__origin__ is None:
|
||
|
if isinstance(self.__extra__, abc.ABCMeta):
|
||
|
self.__extra__._abc_negative_cache_version = value
|
||
|
else:
|
||
|
self._abc_generic_negative_cache_version = value
|
||
|
|
||
|
def _get_type_vars(self, tvars):
|
||
|
if self.__origin__ and self.__parameters__:
|
||
|
_get_type_vars(self.__parameters__, tvars)
|
||
|
|
||
|
def _eval_type(self, globalns, localns):
|
||
|
ev_origin = (self.__origin__._eval_type(globalns, localns)
|
||
|
if self.__origin__ else None)
|
||
|
ev_args = tuple(_eval_type(a, globalns, localns) for a
|
||
|
in self.__args__) if self.__args__ else None
|
||
|
if ev_origin == self.__origin__ and ev_args == self.__args__:
|
||
|
return self
|
||
|
return self.__class__(self.__name__,
|
||
|
self.__bases__,
|
||
|
dict(self.__dict__),
|
||
|
tvars=_type_vars(ev_args) if ev_args else None,
|
||
|
args=ev_args,
|
||
|
origin=ev_origin,
|
||
|
extra=self.__extra__,
|
||
|
orig_bases=self.__orig_bases__)
|
||
|
|
||
|
def __repr__(self):
|
||
|
if self.__origin__ is None:
|
||
|
return super(GenericMeta, self).__repr__()
|
||
|
return self._tree_repr(self._subs_tree())
|
||
|
|
||
|
def _tree_repr(self, tree):
|
||
|
arg_list = []
|
||
|
for arg in tree[1:]:
|
||
|
if arg == ():
|
||
|
arg_list.append('()')
|
||
|
elif not isinstance(arg, tuple):
|
||
|
arg_list.append(_type_repr(arg))
|
||
|
else:
|
||
|
arg_list.append(arg[0]._tree_repr(arg))
|
||
|
return super(GenericMeta, self).__repr__() + '[%s]' % ', '.join(arg_list)
|
||
|
|
||
|
def _subs_tree(self, tvars=None, args=None):
|
||
|
if self.__origin__ is None:
|
||
|
return self
|
||
|
tree_args = _subs_tree(self, tvars, args)
|
||
|
return (self._gorg,) + tuple(tree_args)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, GenericMeta):
|
||
|
return NotImplemented
|
||
|
if self.__origin__ is None or other.__origin__ is None:
|
||
|
return self is other
|
||
|
return self.__tree_hash__ == other.__tree_hash__
|
||
|
|
||
|
def __hash__(self):
|
||
|
return self.__tree_hash__
|
||
|
|
||
|
@_tp_cache
|
||
|
def __getitem__(self, params):
|
||
|
if not isinstance(params, tuple):
|
||
|
params = (params,)
|
||
|
if not params and self._gorg is not Tuple:
|
||
|
raise TypeError(
|
||
|
"Parameter list to %s[...] cannot be empty" % _qualname(self))
|
||
|
msg = "Parameters to generic types must be types."
|
||
|
params = tuple(_type_check(p, msg) for p in params)
|
||
|
if self in (Generic, Protocol):
|
||
|
# Generic can only be subscripted with unique type variables.
|
||
|
if not all(isinstance(p, TypeVar) for p in params):
|
||
|
raise TypeError(
|
||
|
"Parameters to %s[...] must all be type variables" % self.__name__)
|
||
|
if len(set(params)) != len(params):
|
||
|
raise TypeError(
|
||
|
"Parameters to %s[...] must all be unique" % self.__name__)
|
||
|
tvars = params
|
||
|
args = params
|
||
|
elif self in (Tuple, Callable):
|
||
|
tvars = _type_vars(params)
|
||
|
args = params
|
||
|
elif self.__origin__ in (Generic, Protocol):
|
||
|
# Can't subscript Generic[...] or Protocol[...].
|
||
|
raise TypeError("Cannot subscript already-subscripted %s" %
|
||
|
repr(self))
|
||
|
else:
|
||
|
# Subscripting a regular Generic subclass.
|
||
|
_check_generic(self, params)
|
||
|
tvars = _type_vars(params)
|
||
|
args = params
|
||
|
|
||
|
prepend = (self,) if self.__origin__ is None else ()
|
||
|
return self.__class__(self.__name__,
|
||
|
prepend + self.__bases__,
|
||
|
dict(self.__dict__),
|
||
|
tvars=tvars,
|
||
|
args=args,
|
||
|
origin=self,
|
||
|
extra=self.__extra__,
|
||
|
orig_bases=self.__orig_bases__)
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
if self.__origin__ is not None:
|
||
|
# These should only be modules within the standard library.
|
||
|
# singledispatch is an exception, because it's a Python 2 backport
|
||
|
# of functools.singledispatch.
|
||
|
whitelist = ['abc', 'functools', 'singledispatch']
|
||
|
if (sys._getframe(1).f_globals['__name__'] in whitelist or
|
||
|
# The second frame is needed for the case where we came
|
||
|
# from _ProtocolMeta.__subclasscheck__.
|
||
|
sys._getframe(2).f_globals['__name__'] in whitelist):
|
||
|
return False
|
||
|
raise TypeError("Parameterized generics cannot be used with class "
|
||
|
"or instance checks")
|
||
|
if self is Generic:
|
||
|
raise TypeError("Class %r cannot be used with class "
|
||
|
"or instance checks" % self)
|
||
|
return super(GenericMeta, self).__subclasscheck__(cls)
|
||
|
|
||
|
def __instancecheck__(self, instance):
|
||
|
# Since we extend ABC.__subclasscheck__ and
|
||
|
# ABC.__instancecheck__ inlines the cache checking done by the
|
||
|
# latter, we must extend __instancecheck__ too. For simplicity
|
||
|
# we just skip the cache check -- instance checks for generic
|
||
|
# classes are supposed to be rare anyways.
|
||
|
if hasattr(instance, "__class__"):
|
||
|
return issubclass(instance.__class__, self)
|
||
|
return False
|
||
|
|
||
|
def __setattr__(self, attr, value):
|
||
|
# We consider all the subscripted genrics as proxies for original class
|
||
|
if (
|
||
|
attr.startswith('__') and attr.endswith('__') or
|
||
|
attr.startswith('_abc_')
|
||
|
):
|
||
|
super(GenericMeta, self).__setattr__(attr, value)
|
||
|
else:
|
||
|
super(GenericMeta, self._gorg).__setattr__(attr, value)
|
||
|
|
||
|
|
||
|
def _copy_generic(self):
|
||
|
"""Hack to work around https://bugs.python.org/issue11480 on Python 2"""
|
||
|
return self.__class__(self.__name__, self.__bases__, dict(self.__dict__),
|
||
|
self.__parameters__, self.__args__, self.__origin__,
|
||
|
self.__extra__, self.__orig_bases__)
|
||
|
|
||
|
|
||
|
copy._copy_dispatch[GenericMeta] = _copy_generic
|
||
|
|
||
|
|
||
|
# Prevent checks for Generic to crash when defining Generic.
|
||
|
Generic = None
|
||
|
|
||
|
|
||
|
def _generic_new(base_cls, cls, *args, **kwds):
|
||
|
# Assure type is erased on instantiation,
|
||
|
# but attempt to store it in __orig_class__
|
||
|
if cls.__origin__ is None:
|
||
|
if (base_cls.__new__ is object.__new__ and
|
||
|
cls.__init__ is not object.__init__):
|
||
|
return base_cls.__new__(cls)
|
||
|
else:
|
||
|
return base_cls.__new__(cls, *args, **kwds)
|
||
|
else:
|
||
|
origin = cls._gorg
|
||
|
if (base_cls.__new__ is object.__new__ and
|
||
|
cls.__init__ is not object.__init__):
|
||
|
obj = base_cls.__new__(origin)
|
||
|
else:
|
||
|
obj = base_cls.__new__(origin, *args, **kwds)
|
||
|
try:
|
||
|
obj.__orig_class__ = cls
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
obj.__init__(*args, **kwds)
|
||
|
return obj
|
||
|
|
||
|
|
||
|
class Generic(object):
|
||
|
"""Abstract base class for generic types.
|
||
|
|
||
|
A generic type is typically declared by inheriting from
|
||
|
this class parameterized with one or more type variables.
|
||
|
For example, a generic mapping type might be defined as::
|
||
|
|
||
|
class Mapping(Generic[KT, VT]):
|
||
|
def __getitem__(self, key: KT) -> VT:
|
||
|
...
|
||
|
# Etc.
|
||
|
|
||
|
This class can then be used as follows::
|
||
|
|
||
|
def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
|
||
|
try:
|
||
|
return mapping[key]
|
||
|
except KeyError:
|
||
|
return default
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = GenericMeta
|
||
|
__slots__ = ()
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Generic:
|
||
|
raise TypeError("Type Generic cannot be instantiated; "
|
||
|
"it can be used only as a base class")
|
||
|
return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class _TypingEmpty(object):
|
||
|
"""Internal placeholder for () or []. Used by TupleMeta and CallableMeta
|
||
|
to allow empty list/tuple in specific places, without allowing them
|
||
|
to sneak in where prohibited.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class _TypingEllipsis(object):
|
||
|
"""Internal placeholder for ... (ellipsis)."""
|
||
|
|
||
|
|
||
|
class TupleMeta(GenericMeta):
|
||
|
"""Metaclass for Tuple (internal)."""
|
||
|
|
||
|
@_tp_cache
|
||
|
def __getitem__(self, parameters):
|
||
|
if self.__origin__ is not None or self._gorg is not Tuple:
|
||
|
# Normal generic rules apply if this is not the first subscription
|
||
|
# or a subscription of a subclass.
|
||
|
return super(TupleMeta, self).__getitem__(parameters)
|
||
|
if parameters == ():
|
||
|
return super(TupleMeta, self).__getitem__((_TypingEmpty,))
|
||
|
if not isinstance(parameters, tuple):
|
||
|
parameters = (parameters,)
|
||
|
if len(parameters) == 2 and parameters[1] is Ellipsis:
|
||
|
msg = "Tuple[t, ...]: t must be a type."
|
||
|
p = _type_check(parameters[0], msg)
|
||
|
return super(TupleMeta, self).__getitem__((p, _TypingEllipsis))
|
||
|
msg = "Tuple[t0, t1, ...]: each t must be a type."
|
||
|
parameters = tuple(_type_check(p, msg) for p in parameters)
|
||
|
return super(TupleMeta, self).__getitem__(parameters)
|
||
|
|
||
|
def __instancecheck__(self, obj):
|
||
|
if self.__args__ is None:
|
||
|
return isinstance(obj, tuple)
|
||
|
raise TypeError("Parameterized Tuple cannot be used "
|
||
|
"with isinstance().")
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
if self.__args__ is None:
|
||
|
return issubclass(cls, tuple)
|
||
|
raise TypeError("Parameterized Tuple cannot be used "
|
||
|
"with issubclass().")
|
||
|
|
||
|
|
||
|
copy._copy_dispatch[TupleMeta] = _copy_generic
|
||
|
|
||
|
|
||
|
class Tuple(tuple):
|
||
|
"""Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
|
||
|
|
||
|
Example: Tuple[T1, T2] is a tuple of two elements corresponding
|
||
|
to type variables T1 and T2. Tuple[int, float, str] is a tuple
|
||
|
of an int, a float and a string.
|
||
|
|
||
|
To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = TupleMeta
|
||
|
__extra__ = tuple
|
||
|
__slots__ = ()
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Tuple:
|
||
|
raise TypeError("Type Tuple cannot be instantiated; "
|
||
|
"use tuple() instead")
|
||
|
return _generic_new(tuple, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class CallableMeta(GenericMeta):
|
||
|
""" Metaclass for Callable."""
|
||
|
|
||
|
def __repr__(self):
|
||
|
if self.__origin__ is None:
|
||
|
return super(CallableMeta, self).__repr__()
|
||
|
return self._tree_repr(self._subs_tree())
|
||
|
|
||
|
def _tree_repr(self, tree):
|
||
|
if self._gorg is not Callable:
|
||
|
return super(CallableMeta, self)._tree_repr(tree)
|
||
|
# For actual Callable (not its subclass) we override
|
||
|
# super(CallableMeta, self)._tree_repr() for nice formatting.
|
||
|
arg_list = []
|
||
|
for arg in tree[1:]:
|
||
|
if not isinstance(arg, tuple):
|
||
|
arg_list.append(_type_repr(arg))
|
||
|
else:
|
||
|
arg_list.append(arg[0]._tree_repr(arg))
|
||
|
if arg_list[0] == '...':
|
||
|
return repr(tree[0]) + '[..., %s]' % arg_list[1]
|
||
|
return (repr(tree[0]) +
|
||
|
'[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1]))
|
||
|
|
||
|
def __getitem__(self, parameters):
|
||
|
"""A thin wrapper around __getitem_inner__ to provide the latter
|
||
|
with hashable arguments to improve speed.
|
||
|
"""
|
||
|
|
||
|
if self.__origin__ is not None or self._gorg is not Callable:
|
||
|
return super(CallableMeta, self).__getitem__(parameters)
|
||
|
if not isinstance(parameters, tuple) or len(parameters) != 2:
|
||
|
raise TypeError("Callable must be used as "
|
||
|
"Callable[[arg, ...], result].")
|
||
|
args, result = parameters
|
||
|
if args is Ellipsis:
|
||
|
parameters = (Ellipsis, result)
|
||
|
else:
|
||
|
if not isinstance(args, list):
|
||
|
raise TypeError("Callable[args, result]: args must be a list."
|
||
|
" Got %.100r." % (args,))
|
||
|
parameters = (tuple(args), result)
|
||
|
return self.__getitem_inner__(parameters)
|
||
|
|
||
|
@_tp_cache
|
||
|
def __getitem_inner__(self, parameters):
|
||
|
args, result = parameters
|
||
|
msg = "Callable[args, result]: result must be a type."
|
||
|
result = _type_check(result, msg)
|
||
|
if args is Ellipsis:
|
||
|
return super(CallableMeta, self).__getitem__((_TypingEllipsis, result))
|
||
|
msg = "Callable[[arg, ...], result]: each arg must be a type."
|
||
|
args = tuple(_type_check(arg, msg) for arg in args)
|
||
|
parameters = args + (result,)
|
||
|
return super(CallableMeta, self).__getitem__(parameters)
|
||
|
|
||
|
|
||
|
copy._copy_dispatch[CallableMeta] = _copy_generic
|
||
|
|
||
|
|
||
|
class Callable(object):
|
||
|
"""Callable type; Callable[[int], str] is a function of (int) -> str.
|
||
|
|
||
|
The subscription syntax must always be used with exactly two
|
||
|
values: the argument list and the return type. The argument list
|
||
|
must be a list of types or ellipsis; the return type must be a single type.
|
||
|
|
||
|
There is no syntax to indicate optional or keyword arguments,
|
||
|
such function types are rarely used as callback types.
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = CallableMeta
|
||
|
__extra__ = collections_abc.Callable
|
||
|
__slots__ = ()
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Callable:
|
||
|
raise TypeError("Type Callable cannot be instantiated; "
|
||
|
"use a non-abstract subclass instead")
|
||
|
return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
def cast(typ, val):
|
||
|
"""Cast a value to a type.
|
||
|
|
||
|
This returns the value unchanged. To the type checker this
|
||
|
signals that the return value has the designated type, but at
|
||
|
runtime we intentionally don't check anything (we want this
|
||
|
to be as fast as possible).
|
||
|
"""
|
||
|
return val
|
||
|
|
||
|
|
||
|
def _get_defaults(func):
|
||
|
"""Internal helper to extract the default arguments, by name."""
|
||
|
code = func.__code__
|
||
|
pos_count = code.co_argcount
|
||
|
arg_names = code.co_varnames
|
||
|
arg_names = arg_names[:pos_count]
|
||
|
defaults = func.__defaults__ or ()
|
||
|
kwdefaults = func.__kwdefaults__
|
||
|
res = dict(kwdefaults) if kwdefaults else {}
|
||
|
pos_offset = pos_count - len(defaults)
|
||
|
for name, value in zip(arg_names[pos_offset:], defaults):
|
||
|
assert name not in res
|
||
|
res[name] = value
|
||
|
return res
|
||
|
|
||
|
|
||
|
def get_type_hints(obj, globalns=None, localns=None):
|
||
|
"""In Python 2 this is not supported and always returns None."""
|
||
|
return None
|
||
|
|
||
|
|
||
|
def no_type_check(arg):
|
||
|
"""Decorator to indicate that annotations are not type hints.
|
||
|
|
||
|
The argument must be a class or function; if it is a class, it
|
||
|
applies recursively to all methods and classes defined in that class
|
||
|
(but not to methods defined in its superclasses or subclasses).
|
||
|
|
||
|
This mutates the function(s) or class(es) in place.
|
||
|
"""
|
||
|
if isinstance(arg, type):
|
||
|
arg_attrs = arg.__dict__.copy()
|
||
|
for attr, val in arg.__dict__.items():
|
||
|
if val in arg.__bases__ + (arg,):
|
||
|
arg_attrs.pop(attr)
|
||
|
for obj in arg_attrs.values():
|
||
|
if isinstance(obj, types.FunctionType):
|
||
|
obj.__no_type_check__ = True
|
||
|
if isinstance(obj, type):
|
||
|
no_type_check(obj)
|
||
|
try:
|
||
|
arg.__no_type_check__ = True
|
||
|
except TypeError: # built-in classes
|
||
|
pass
|
||
|
return arg
|
||
|
|
||
|
|
||
|
def no_type_check_decorator(decorator):
|
||
|
"""Decorator to give another decorator the @no_type_check effect.
|
||
|
|
||
|
This wraps the decorator with something that wraps the decorated
|
||
|
function in @no_type_check.
|
||
|
"""
|
||
|
|
||
|
@functools.wraps(decorator)
|
||
|
def wrapped_decorator(*args, **kwds):
|
||
|
func = decorator(*args, **kwds)
|
||
|
func = no_type_check(func)
|
||
|
return func
|
||
|
|
||
|
return wrapped_decorator
|
||
|
|
||
|
|
||
|
def _overload_dummy(*args, **kwds):
|
||
|
"""Helper for @overload to raise when called."""
|
||
|
raise NotImplementedError(
|
||
|
"You should not call an overloaded function. "
|
||
|
"A series of @overload-decorated functions "
|
||
|
"outside a stub module should always be followed "
|
||
|
"by an implementation that is not @overload-ed.")
|
||
|
|
||
|
|
||
|
def overload(func):
|
||
|
"""Decorator for overloaded functions/methods.
|
||
|
|
||
|
In a stub file, place two or more stub definitions for the same
|
||
|
function in a row, each decorated with @overload. For example:
|
||
|
|
||
|
@overload
|
||
|
def utf8(value: None) -> None: ...
|
||
|
@overload
|
||
|
def utf8(value: bytes) -> bytes: ...
|
||
|
@overload
|
||
|
def utf8(value: str) -> bytes: ...
|
||
|
|
||
|
In a non-stub file (i.e. a regular .py file), do the same but
|
||
|
follow it with an implementation. The implementation should *not*
|
||
|
be decorated with @overload. For example:
|
||
|
|
||
|
@overload
|
||
|
def utf8(value: None) -> None: ...
|
||
|
@overload
|
||
|
def utf8(value: bytes) -> bytes: ...
|
||
|
@overload
|
||
|
def utf8(value: str) -> bytes: ...
|
||
|
def utf8(value):
|
||
|
# implementation goes here
|
||
|
"""
|
||
|
return _overload_dummy
|
||
|
|
||
|
|
||
|
_PROTO_WHITELIST = ['Callable', 'Iterable', 'Iterator',
|
||
|
'Hashable', 'Sized', 'Container', 'Collection',
|
||
|
'Reversible', 'ContextManager']
|
||
|
|
||
|
|
||
|
class _ProtocolMeta(GenericMeta):
|
||
|
"""Internal metaclass for Protocol.
|
||
|
|
||
|
This exists so Protocol classes can be generic without deriving
|
||
|
from Generic.
|
||
|
"""
|
||
|
def __init__(cls, *args, **kwargs):
|
||
|
super(_ProtocolMeta, cls).__init__(*args, **kwargs)
|
||
|
if not cls.__dict__.get('_is_protocol', None):
|
||
|
cls._is_protocol = any(b is Protocol or
|
||
|
isinstance(b, _ProtocolMeta) and
|
||
|
b.__origin__ is Protocol
|
||
|
for b in cls.__bases__)
|
||
|
if cls._is_protocol:
|
||
|
for base in cls.__mro__[1:]:
|
||
|
if not (base in (object, Generic) or
|
||
|
base.__module__ == '_abcoll' and
|
||
|
base.__name__ in _PROTO_WHITELIST or
|
||
|
isinstance(base, TypingMeta) and base._is_protocol or
|
||
|
isinstance(base, GenericMeta) and base.__origin__ is Generic):
|
||
|
raise TypeError('Protocols can only inherit from other protocols,'
|
||
|
' got %r' % base)
|
||
|
cls._callable_members_only = all(callable(getattr(cls, attr))
|
||
|
for attr in cls._get_protocol_attrs())
|
||
|
|
||
|
def _no_init(self, *args, **kwargs):
|
||
|
if type(self)._is_protocol:
|
||
|
raise TypeError('Protocols cannot be instantiated')
|
||
|
cls.__init__ = _no_init
|
||
|
|
||
|
def _proto_hook(cls, other):
|
||
|
if not cls.__dict__.get('_is_protocol', None):
|
||
|
return NotImplemented
|
||
|
if not isinstance(other, type):
|
||
|
# Similar error as for issubclass(1, int)
|
||
|
# (also not a chance for old-style classes)
|
||
|
raise TypeError('issubclass() arg 1 must be a new-style class')
|
||
|
for attr in cls._get_protocol_attrs():
|
||
|
for base in other.__mro__:
|
||
|
if attr in base.__dict__:
|
||
|
if base.__dict__[attr] is None:
|
||
|
return NotImplemented
|
||
|
break
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
return True
|
||
|
if '__subclasshook__' not in cls.__dict__:
|
||
|
cls.__subclasshook__ = classmethod(_proto_hook)
|
||
|
|
||
|
def __instancecheck__(self, instance):
|
||
|
# We need this method for situations where attributes are assigned in __init__
|
||
|
if isinstance(instance, type):
|
||
|
# This looks like a fundamental limitation of Python 2.
|
||
|
# It cannot support runtime protocol metaclasses, On Python 2 classes
|
||
|
# cannot be correctly inspected as instances of protocols.
|
||
|
return False
|
||
|
if ((not getattr(self, '_is_protocol', False) or
|
||
|
self._callable_members_only) and
|
||
|
issubclass(instance.__class__, self)):
|
||
|
return True
|
||
|
if self._is_protocol:
|
||
|
if all(hasattr(instance, attr) and
|
||
|
(not callable(getattr(self, attr)) or
|
||
|
getattr(instance, attr) is not None)
|
||
|
for attr in self._get_protocol_attrs()):
|
||
|
return True
|
||
|
return super(GenericMeta, self).__instancecheck__(instance)
|
||
|
|
||
|
def __subclasscheck__(self, cls):
|
||
|
if (self.__dict__.get('_is_protocol', None) and
|
||
|
not self.__dict__.get('_is_runtime_protocol', None)):
|
||
|
if (sys._getframe(1).f_globals['__name__'] in ['abc', 'functools'] or
|
||
|
# This is needed because we remove subclasses from unions on Python 2.
|
||
|
sys._getframe(2).f_globals['__name__'] == 'typing'):
|
||
|
return False
|
||
|
raise TypeError("Instance and class checks can only be used with"
|
||
|
" @runtime_checkable protocols")
|
||
|
if (self.__dict__.get('_is_runtime_protocol', None) and
|
||
|
not self._callable_members_only):
|
||
|
if sys._getframe(1).f_globals['__name__'] in ['abc', 'functools']:
|
||
|
return super(GenericMeta, self).__subclasscheck__(cls)
|
||
|
raise TypeError("Protocols with non-method members"
|
||
|
" don't support issubclass()")
|
||
|
return super(_ProtocolMeta, self).__subclasscheck__(cls)
|
||
|
|
||
|
def _get_protocol_attrs(self):
|
||
|
attrs = set()
|
||
|
for base in self.__mro__[:-1]: # without object
|
||
|
if base.__name__ in ('Protocol', 'Generic'):
|
||
|
continue
|
||
|
annotations = getattr(base, '__annotations__', {})
|
||
|
for attr in list(base.__dict__.keys()) + list(annotations.keys()):
|
||
|
if (not attr.startswith('_abc_') and attr not in (
|
||
|
'__abstractmethods__', '__annotations__', '__weakref__',
|
||
|
'_is_protocol', '_is_runtime_protocol', '__dict__',
|
||
|
'__args__', '__slots__', '_get_protocol_attrs',
|
||
|
'__next_in_mro__', '__parameters__', '__origin__',
|
||
|
'__orig_bases__', '__extra__', '__tree_hash__',
|
||
|
'__doc__', '__subclasshook__', '__init__', '__new__',
|
||
|
'__module__', '_MutableMapping__marker',
|
||
|
'__metaclass__', '_gorg', '_callable_members_only')):
|
||
|
attrs.add(attr)
|
||
|
return attrs
|
||
|
|
||
|
|
||
|
class Protocol(object):
|
||
|
"""Base class for protocol classes. Protocol classes are defined as::
|
||
|
|
||
|
class Proto(Protocol):
|
||
|
def meth(self):
|
||
|
# type: () -> int
|
||
|
pass
|
||
|
|
||
|
Such classes are primarily used with static type checkers that recognize
|
||
|
structural subtyping (static duck-typing), for example::
|
||
|
|
||
|
class C:
|
||
|
def meth(self):
|
||
|
# type: () -> int
|
||
|
return 0
|
||
|
|
||
|
def func(x):
|
||
|
# type: (Proto) -> int
|
||
|
return x.meth()
|
||
|
|
||
|
func(C()) # Passes static type check
|
||
|
|
||
|
See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable
|
||
|
act as simple-minded runtime protocols that checks only the presence of
|
||
|
given attributes, ignoring their type signatures.
|
||
|
|
||
|
Protocol classes can be generic, they are defined as::
|
||
|
|
||
|
class GenProto(Protocol[T]):
|
||
|
def meth(self):
|
||
|
# type: () -> T
|
||
|
pass
|
||
|
"""
|
||
|
|
||
|
__metaclass__ = _ProtocolMeta
|
||
|
__slots__ = ()
|
||
|
_is_protocol = True
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Protocol:
|
||
|
raise TypeError("Type Protocol cannot be instantiated; "
|
||
|
"it can be used only as a base class")
|
||
|
return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
def runtime_checkable(cls):
|
||
|
"""Mark a protocol class as a runtime protocol, so that it
|
||
|
can be used with isinstance() and issubclass(). Raise TypeError
|
||
|
if applied to a non-protocol class.
|
||
|
|
||
|
This allows a simple-minded structural check very similar to the
|
||
|
one-offs in collections.abc such as Hashable.
|
||
|
"""
|
||
|
if not isinstance(cls, _ProtocolMeta) or not cls._is_protocol:
|
||
|
raise TypeError('@runtime_checkable can be only applied to protocol classes,'
|
||
|
' got %r' % cls)
|
||
|
cls._is_runtime_protocol = True
|
||
|
return cls
|
||
|
|
||
|
|
||
|
# Various ABCs mimicking those in collections.abc.
|
||
|
# A few are simply re-exported for completeness.
|
||
|
|
||
|
Hashable = collections_abc.Hashable # Not generic.
|
||
|
|
||
|
|
||
|
class Iterable(Generic[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Iterable
|
||
|
|
||
|
|
||
|
class Iterator(Iterable[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Iterator
|
||
|
|
||
|
|
||
|
@runtime_checkable
|
||
|
class SupportsInt(Protocol):
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __int__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@runtime_checkable
|
||
|
class SupportsFloat(Protocol):
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __float__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@runtime_checkable
|
||
|
class SupportsComplex(Protocol):
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __complex__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@runtime_checkable
|
||
|
class SupportsIndex(Protocol):
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __index__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@runtime_checkable
|
||
|
class SupportsAbs(Protocol[T_co]):
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __abs__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
if hasattr(collections_abc, 'Reversible'):
|
||
|
class Reversible(Iterable[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Reversible
|
||
|
else:
|
||
|
@runtime_checkable
|
||
|
class Reversible(Protocol[T_co]):
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __reversed__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
Sized = collections_abc.Sized # Not generic.
|
||
|
|
||
|
|
||
|
class Container(Generic[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Container
|
||
|
|
||
|
|
||
|
# Callable was defined earlier.
|
||
|
|
||
|
|
||
|
class AbstractSet(Sized, Iterable[T_co], Container[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Set
|
||
|
|
||
|
|
||
|
class MutableSet(AbstractSet[T]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.MutableSet
|
||
|
|
||
|
|
||
|
# NOTE: It is only covariant in the value type.
|
||
|
class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Mapping
|
||
|
|
||
|
|
||
|
class MutableMapping(Mapping[KT, VT]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.MutableMapping
|
||
|
|
||
|
|
||
|
if hasattr(collections_abc, 'Reversible'):
|
||
|
class Sequence(Sized, Reversible[T_co], Container[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Sequence
|
||
|
else:
|
||
|
class Sequence(Sized, Iterable[T_co], Container[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.Sequence
|
||
|
|
||
|
|
||
|
class MutableSequence(Sequence[T]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.MutableSequence
|
||
|
|
||
|
|
||
|
class ByteString(Sequence[int]):
|
||
|
pass
|
||
|
|
||
|
|
||
|
ByteString.register(str)
|
||
|
ByteString.register(bytearray)
|
||
|
|
||
|
|
||
|
class List(list, MutableSequence[T]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = list
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is List:
|
||
|
raise TypeError("Type List cannot be instantiated; "
|
||
|
"use list() instead")
|
||
|
return _generic_new(list, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class Deque(collections.deque, MutableSequence[T]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections.deque
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Deque:
|
||
|
return collections.deque(*args, **kwds)
|
||
|
return _generic_new(collections.deque, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class Set(set, MutableSet[T]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = set
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Set:
|
||
|
raise TypeError("Type Set cannot be instantiated; "
|
||
|
"use set() instead")
|
||
|
return _generic_new(set, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class FrozenSet(frozenset, AbstractSet[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = frozenset
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is FrozenSet:
|
||
|
raise TypeError("Type FrozenSet cannot be instantiated; "
|
||
|
"use frozenset() instead")
|
||
|
return _generic_new(frozenset, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class MappingView(Sized, Iterable[T_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.MappingView
|
||
|
|
||
|
|
||
|
class KeysView(MappingView[KT], AbstractSet[KT]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.KeysView
|
||
|
|
||
|
|
||
|
class ItemsView(MappingView[Tuple[KT, VT_co]],
|
||
|
AbstractSet[Tuple[KT, VT_co]],
|
||
|
Generic[KT, VT_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.ItemsView
|
||
|
|
||
|
|
||
|
class ValuesView(MappingView[VT_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections_abc.ValuesView
|
||
|
|
||
|
|
||
|
class ContextManager(Generic[T_co]):
|
||
|
__slots__ = ()
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||
|
return None
|
||
|
|
||
|
@classmethod
|
||
|
def __subclasshook__(cls, C):
|
||
|
if cls is ContextManager:
|
||
|
# In Python 3.6+, it is possible to set a method to None to
|
||
|
# explicitly indicate that the class does not implement an ABC
|
||
|
# (https://bugs.python.org/issue25958), but we do not support
|
||
|
# that pattern here because this fallback class is only used
|
||
|
# in Python 3.5 and earlier.
|
||
|
if (any("__enter__" in B.__dict__ for B in C.__mro__) and
|
||
|
any("__exit__" in B.__dict__ for B in C.__mro__)):
|
||
|
return True
|
||
|
return NotImplemented
|
||
|
|
||
|
|
||
|
class Dict(dict, MutableMapping[KT, VT]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = dict
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Dict:
|
||
|
raise TypeError("Type Dict cannot be instantiated; "
|
||
|
"use dict() instead")
|
||
|
return _generic_new(dict, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class DefaultDict(collections.defaultdict, MutableMapping[KT, VT]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections.defaultdict
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is DefaultDict:
|
||
|
return collections.defaultdict(*args, **kwds)
|
||
|
return _generic_new(collections.defaultdict, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
class Counter(collections.Counter, Dict[T, int]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = collections.Counter
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Counter:
|
||
|
return collections.Counter(*args, **kwds)
|
||
|
return _generic_new(collections.Counter, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
# Determine what base class to use for Generator.
|
||
|
if hasattr(collections_abc, 'Generator'):
|
||
|
# Sufficiently recent versions of 3.5 have a Generator ABC.
|
||
|
_G_base = collections_abc.Generator
|
||
|
else:
|
||
|
# Fall back on the exact type.
|
||
|
_G_base = types.GeneratorType
|
||
|
|
||
|
|
||
|
class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co]):
|
||
|
__slots__ = ()
|
||
|
__extra__ = _G_base
|
||
|
|
||
|
def __new__(cls, *args, **kwds):
|
||
|
if cls._gorg is Generator:
|
||
|
raise TypeError("Type Generator cannot be instantiated; "
|
||
|
"create a subclass instead")
|
||
|
return _generic_new(_G_base, cls, *args, **kwds)
|
||
|
|
||
|
|
||
|
# Internal type variable used for Type[].
|
||
|
CT_co = TypeVar('CT_co', covariant=True, bound=type)
|
||
|
|
||
|
|
||
|
# This is not a real generic class. Don't use outside annotations.
|
||
|
class Type(Generic[CT_co]):
|
||
|
"""A special construct usable to annotate class objects.
|
||
|
|
||
|
For example, suppose we have the following classes::
|
||
|
|
||
|
class User: ... # Abstract base for User classes
|
||
|
class BasicUser(User): ...
|
||
|
class ProUser(User): ...
|
||
|
class TeamUser(User): ...
|
||
|
|
||
|
And a function that takes a class argument that's a subclass of
|
||
|
User and returns an instance of the corresponding class::
|
||
|
|
||
|
U = TypeVar('U', bound=User)
|
||
|
def new_user(user_class: Type[U]) -> U:
|
||
|
user = user_class()
|
||
|
# (Here we could write the user object to a database)
|
||
|
return user
|
||
|
|
||
|
joe = new_user(BasicUser)
|
||
|
|
||
|
At this point the type checker knows that joe has type BasicUser.
|
||
|
"""
|
||
|
__slots__ = ()
|
||
|
__extra__ = type
|
||
|
|
||
|
|
||
|
def NamedTuple(typename, fields):
|
||
|
"""Typed version of namedtuple.
|
||
|
|
||
|
Usage::
|
||
|
|
||
|
Employee = typing.NamedTuple('Employee', [('name', str), ('id', int)])
|
||
|
|
||
|
This is equivalent to::
|
||
|
|
||
|
Employee = collections.namedtuple('Employee', ['name', 'id'])
|
||
|
|
||
|
The resulting class has one extra attribute: _field_types,
|
||
|
giving a dict mapping field names to types. (The field names
|
||
|
are in the _fields attribute, which is part of the namedtuple
|
||
|
API.)
|
||
|
"""
|
||
|
fields = [(n, t) for n, t in fields]
|
||
|
cls = collections.namedtuple(typename, [n for n, t in fields])
|
||
|
cls._field_types = dict(fields)
|
||
|
# Set the module to the caller's module (otherwise it'd be 'typing').
|
||
|
try:
|
||
|
cls.__module__ = sys._getframe(1).f_globals.get('__name__', '__main__')
|
||
|
except (AttributeError, ValueError):
|
||
|
pass
|
||
|
return cls
|
||
|
|
||
|
|
||
|
def _check_fails(cls, other):
|
||
|
try:
|
||
|
if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools', 'typing']:
|
||
|
# Typed dicts are only for static structural subtyping.
|
||
|
raise TypeError('TypedDict does not support instance and class checks')
|
||
|
except (AttributeError, ValueError):
|
||
|
pass
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _dict_new(cls, *args, **kwargs):
|
||
|
return dict(*args, **kwargs)
|
||
|
|
||
|
|
||
|
def _typeddict_new(cls, _typename, _fields=None, **kwargs):
|
||
|
total = kwargs.pop('total', True)
|
||
|
if _fields is None:
|
||
|
_fields = kwargs
|
||
|
elif kwargs:
|
||
|
raise TypeError("TypedDict takes either a dict or keyword arguments,"
|
||
|
" but not both")
|
||
|
|
||
|
ns = {'__annotations__': dict(_fields), '__total__': total}
|
||
|
try:
|
||
|
# Setting correct module is necessary to make typed dict classes pickleable.
|
||
|
ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__')
|
||
|
except (AttributeError, ValueError):
|
||
|
pass
|
||
|
|
||
|
return _TypedDictMeta(_typename, (), ns)
|
||
|
|
||
|
|
||
|
class _TypedDictMeta(type):
|
||
|
def __new__(cls, name, bases, ns, total=True):
|
||
|
# Create new typed dict class object.
|
||
|
# This method is called directly when TypedDict is subclassed,
|
||
|
# or via _typeddict_new when TypedDict is instantiated. This way
|
||
|
# TypedDict supports all three syntaxes described in its docstring.
|
||
|
# Subclasses and instances of TypedDict return actual dictionaries
|
||
|
# via _dict_new.
|
||
|
ns['__new__'] = _typeddict_new if name == b'TypedDict' else _dict_new
|
||
|
tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns)
|
||
|
|
||
|
anns = ns.get('__annotations__', {})
|
||
|
msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
|
||
|
anns = {n: _type_check(tp, msg) for n, tp in anns.items()}
|
||
|
for base in bases:
|
||
|
anns.update(base.__dict__.get('__annotations__', {}))
|
||
|
tp_dict.__annotations__ = anns
|
||
|
if not hasattr(tp_dict, '__total__'):
|
||
|
tp_dict.__total__ = total
|
||
|
return tp_dict
|
||
|
|
||
|
__instancecheck__ = __subclasscheck__ = _check_fails
|
||
|
|
||
|
|
||
|
TypedDict = _TypedDictMeta(b'TypedDict', (dict,), {})
|
||
|
TypedDict.__module__ = __name__
|
||
|
TypedDict.__doc__ = \
|
||
|
"""A simple typed name space. At runtime it is equivalent to a plain dict.
|
||
|
|
||
|
TypedDict creates a dictionary type that expects all of its
|
||
|
instances to have a certain set of keys, with each key
|
||
|
associated with a value of a consistent type. This expectation
|
||
|
is not checked at runtime but is only enforced by type checkers.
|
||
|
Usage::
|
||
|
|
||
|
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
|
||
|
|
||
|
a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
|
||
|
b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
|
||
|
|
||
|
assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
|
||
|
|
||
|
The type info could be accessed via Point2D.__annotations__. TypedDict
|
||
|
supports an additional equivalent form::
|
||
|
|
||
|
Point2D = TypedDict('Point2D', x=int, y=int, label=str)
|
||
|
"""
|
||
|
|
||
|
|
||
|
def NewType(name, tp):
|
||
|
"""NewType creates simple unique types with almost zero
|
||
|
runtime overhead. NewType(name, tp) is considered a subtype of tp
|
||
|
by static type checkers. At runtime, NewType(name, tp) returns
|
||
|
a dummy function that simply returns its argument. Usage::
|
||
|
|
||
|
UserId = NewType('UserId', int)
|
||
|
|
||
|
def name_by_id(user_id):
|
||
|
# type: (UserId) -> str
|
||
|
...
|
||
|
|
||
|
UserId('user') # Fails type check
|
||
|
|
||
|
name_by_id(42) # Fails type check
|
||
|
name_by_id(UserId(42)) # OK
|
||
|
|
||
|
num = UserId(5) + 1 # type: int
|
||
|
"""
|
||
|
|
||
|
def new_type(x):
|
||
|
return x
|
||
|
|
||
|
# Some versions of Python 2 complain because of making all strings unicode
|
||
|
new_type.__name__ = str(name)
|
||
|
new_type.__supertype__ = tp
|
||
|
return new_type
|
||
|
|
||
|
|
||
|
# Python-version-specific alias (Python 2: unicode; Python 3: str)
|
||
|
Text = unicode
|
||
|
|
||
|
|
||
|
# Constant that's True when type checking, but False here.
|
||
|
TYPE_CHECKING = False
|
||
|
|
||
|
|
||
|
class IO(Generic[AnyStr]):
|
||
|
"""Generic base class for TextIO and BinaryIO.
|
||
|
|
||
|
This is an abstract, generic version of the return of open().
|
||
|
|
||
|
NOTE: This does not distinguish between the different possible
|
||
|
classes (text vs. binary, read vs. write vs. read/write,
|
||
|
append-only, unbuffered). The TextIO and BinaryIO subclasses
|
||
|
below capture the distinctions between text vs. binary, which is
|
||
|
pervasive in the interface; however we currently do not offer a
|
||
|
way to track the other distinctions in the type system.
|
||
|
"""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractproperty
|
||
|
def mode(self):
|
||
|
pass
|
||
|
|
||
|
@abstractproperty
|
||
|
def name(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def close(self):
|
||
|
pass
|
||
|
|
||
|
@abstractproperty
|
||
|
def closed(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def fileno(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def flush(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def isatty(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def read(self, n=-1):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def readable(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def readline(self, limit=-1):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def readlines(self, hint=-1):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def seek(self, offset, whence=0):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def seekable(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def tell(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def truncate(self, size=None):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def writable(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def write(self, s):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def writelines(self, lines):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def __enter__(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def __exit__(self, type, value, traceback):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class BinaryIO(IO[bytes]):
|
||
|
"""Typed version of the return of open() in binary mode."""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def write(self, s):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def __enter__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TextIO(IO[unicode]):
|
||
|
"""Typed version of the return of open() in text mode."""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractproperty
|
||
|
def buffer(self):
|
||
|
pass
|
||
|
|
||
|
@abstractproperty
|
||
|
def encoding(self):
|
||
|
pass
|
||
|
|
||
|
@abstractproperty
|
||
|
def errors(self):
|
||
|
pass
|
||
|
|
||
|
@abstractproperty
|
||
|
def line_buffering(self):
|
||
|
pass
|
||
|
|
||
|
@abstractproperty
|
||
|
def newlines(self):
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def __enter__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class io(object):
|
||
|
"""Wrapper namespace for IO generic classes."""
|
||
|
|
||
|
__all__ = ['IO', 'TextIO', 'BinaryIO']
|
||
|
IO = IO
|
||
|
TextIO = TextIO
|
||
|
BinaryIO = BinaryIO
|
||
|
|
||
|
|
||
|
io.__name__ = __name__ + b'.io'
|
||
|
sys.modules[io.__name__] = io
|
||
|
|
||
|
|
||
|
Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
|
||
|
lambda p: p.pattern)
|
||
|
Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
|
||
|
lambda m: m.re.pattern)
|
||
|
|
||
|
|
||
|
class re(object):
|
||
|
"""Wrapper namespace for re type aliases."""
|
||
|
|
||
|
__all__ = ['Pattern', 'Match']
|
||
|
Pattern = Pattern
|
||
|
Match = Match
|
||
|
|
||
|
|
||
|
re.__name__ = __name__ + b'.re'
|
||
|
sys.modules[re.__name__] = re
|