fix vendor

This commit is contained in:
2023-09-07 12:06:13 +03:00
parent 4963339b34
commit 731ddbc133
130 changed files with 253704 additions and 0 deletions

1972
vendor/netaddr/ip/__init__.py vendored Normal file

File diff suppressed because it is too large Load Diff

312
vendor/netaddr/ip/glob.py vendored Normal file
View File

@@ -0,0 +1,312 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""
Routines and classes for supporting and expressing IP address ranges using a
glob style syntax.
"""
from netaddr.core import AddrFormatError, AddrConversionError
from netaddr.ip import IPRange, IPAddress, IPNetwork, iprange_to_cidrs
from netaddr.compat import _is_str
def valid_glob(ipglob):
"""
:param ipglob: An IP address range in a glob-style format.
:return: ``True`` if IP range glob is valid, ``False`` otherwise.
"""
#TODO: Add support for abbreviated ipglobs.
#TODO: e.g. 192.0.*.* == 192.0.*
#TODO: *.*.*.* == *
#TODO: Add strict flag to enable verbose ipglob checking.
if not _is_str(ipglob):
return False
seen_hyphen = False
seen_asterisk = False
octets = ipglob.split('.')
if len(octets) != 4:
return False
for octet in octets:
if '-' in octet:
if seen_hyphen:
return False
seen_hyphen = True
if seen_asterisk:
# Asterisks cannot precede hyphenated octets.
return False
try:
(octet1, octet2) = [int(i) for i in octet.split('-')]
except ValueError:
return False
if octet1 >= octet2:
return False
if not 0 <= octet1 <= 254:
return False
if not 1 <= octet2 <= 255:
return False
elif octet == '*':
seen_asterisk = True
else:
if seen_hyphen is True:
return False
if seen_asterisk is True:
return False
try:
if not 0 <= int(octet) <= 255:
return False
except ValueError:
return False
return True
def glob_to_iptuple(ipglob):
"""
A function that accepts a glob-style IP range and returns the component
lower and upper bound IP address.
:param ipglob: an IP address range in a glob-style format.
:return: a tuple contain lower and upper bound IP objects.
"""
if not valid_glob(ipglob):
raise AddrFormatError('not a recognised IP glob range: %r!' % (ipglob,))
start_tokens = []
end_tokens = []
for octet in ipglob.split('.'):
if '-' in octet:
tokens = octet.split('-')
start_tokens.append(tokens[0])
end_tokens.append(tokens[1])
elif octet == '*':
start_tokens.append('0')
end_tokens.append('255')
else:
start_tokens.append(octet)
end_tokens.append(octet)
return IPAddress('.'.join(start_tokens)), IPAddress('.'.join(end_tokens))
def glob_to_iprange(ipglob):
"""
A function that accepts a glob-style IP range and returns the equivalent
IP range.
:param ipglob: an IP address range in a glob-style format.
:return: an IPRange object.
"""
if not valid_glob(ipglob):
raise AddrFormatError('not a recognised IP glob range: %r!' % (ipglob,))
start_tokens = []
end_tokens = []
for octet in ipglob.split('.'):
if '-' in octet:
tokens = octet.split('-')
start_tokens.append(tokens[0])
end_tokens.append(tokens[1])
elif octet == '*':
start_tokens.append('0')
end_tokens.append('255')
else:
start_tokens.append(octet)
end_tokens.append(octet)
return IPRange('.'.join(start_tokens), '.'.join(end_tokens))
def iprange_to_globs(start, end):
"""
A function that accepts an arbitrary start and end IP address or subnet
and returns one or more glob-style IP ranges.
:param start: the start IP address or subnet.
:param end: the end IP address or subnet.
:return: a list containing one or more IP globs.
"""
start = IPAddress(start)
end = IPAddress(end)
if start.version != 4 and end.version != 4:
raise AddrConversionError('IP glob ranges only support IPv4!')
def _iprange_to_glob(lb, ub):
# Internal function to process individual IP globs.
t1 = [int(_) for _ in str(lb).split('.')]
t2 = [int(_) for _ in str(ub).split('.')]
tokens = []
seen_hyphen = False
seen_asterisk = False
for i in range(4):
if t1[i] == t2[i]:
# A normal octet.
tokens.append(str(t1[i]))
elif (t1[i] == 0) and (t2[i] == 255):
# An asterisk octet.
tokens.append('*')
seen_asterisk = True
else:
# Create a hyphenated octet - only one allowed per IP glob.
if not seen_asterisk:
if not seen_hyphen:
tokens.append('%s-%s' % (t1[i], t2[i]))
seen_hyphen = True
else:
raise AddrConversionError(
'only 1 hyphenated octet per IP glob allowed!')
else:
raise AddrConversionError(
"asterisks are not allowed before hyphenated octets!")
return '.'.join(tokens)
globs = []
try:
# IP range can be represented by a single glob.
ipglob = _iprange_to_glob(start, end)
if not valid_glob(ipglob):
#TODO: this is a workaround, it is produces non-optimal but valid
#TODO: glob conversions. Fix inner function so that is always
#TODO: produces a valid glob.
raise AddrConversionError('invalid ip glob created')
globs.append(ipglob)
except AddrConversionError:
# Break IP range up into CIDRs before conversion to globs.
#
#TODO: this is still not completely optimised but is good enough
#TODO: for the moment.
#
for cidr in iprange_to_cidrs(start, end):
ipglob = _iprange_to_glob(cidr[0], cidr[-1])
globs.append(ipglob)
return globs
def glob_to_cidrs(ipglob):
"""
A function that accepts a glob-style IP range and returns a list of one
or more IP CIDRs that exactly matches it.
:param ipglob: an IP address range in a glob-style format.
:return: a list of one or more IP objects.
"""
return iprange_to_cidrs(*glob_to_iptuple(ipglob))
def cidr_to_glob(cidr):
"""
A function that accepts an IP subnet in a glob-style format and returns
a list of CIDR subnets that exactly matches the specified glob.
:param cidr: an IP object CIDR subnet.
:return: a list of one or more IP addresses and subnets.
"""
ip = IPNetwork(cidr)
globs = iprange_to_globs(ip[0], ip[-1])
if len(globs) != 1:
# There should only ever be a one to one mapping between a CIDR and
# an IP glob range.
raise AddrConversionError('bad CIDR to IP glob conversion!')
return globs[0]
class IPGlob(IPRange):
"""
Represents an IP address range using a glob-style syntax ``x.x.x-y.*``
Individual octets can be represented using the following shortcuts :
1. ``*`` - the asterisk octet (represents values ``0`` through ``255``)
2. ``x-y`` - the hyphenated octet (represents values ``x`` through ``y``)
A few basic rules also apply :
1. ``x`` must always be less than ``y``, therefore :
- ``x`` can only be ``0`` through ``254``
- ``y`` can only be ``1`` through ``255``
2. only one hyphenated octet per IP glob is allowed
3. only asterisks are permitted after a hyphenated octet
Examples:
+------------------+------------------------------+
| IP glob | Description |
+==================+==============================+
| ``192.0.2.1`` | a single address |
+------------------+------------------------------+
| ``192.0.2.0-31`` | 32 addresses |
+------------------+------------------------------+
| ``192.0.2.*`` | 256 addresses |
+------------------+------------------------------+
| ``192.0.2-3.*`` | 512 addresses |
+------------------+------------------------------+
| ``192.0-1.*.*`` | 131,072 addresses |
+------------------+------------------------------+
| ``*.*.*.*`` | the whole IPv4 address space |
+------------------+------------------------------+
.. note :: \
IP glob ranges are not directly equivalent to CIDR blocks. \
They can represent address ranges that do not fall on strict bit mask \
boundaries. They are suitable for use in configuration files, being \
more obvious and readable than their CIDR counterparts, especially for \
admins and end users with little or no networking knowledge or \
experience. All CIDR addresses can always be represented as IP globs \
but the reverse is not always true.
"""
__slots__ = ('_glob',)
def __init__(self, ipglob):
(start, end) = glob_to_iptuple(ipglob)
super(IPGlob, self).__init__(start, end)
self.glob = iprange_to_globs(self._start, self._end)[0]
def __getstate__(self):
""":return: Pickled state of an `IPGlob` object."""
return super(IPGlob, self).__getstate__()
def __setstate__(self, state):
""":param state: data used to unpickle a pickled `IPGlob` object."""
super(IPGlob, self).__setstate__(state)
self.glob = iprange_to_globs(self._start, self._end)[0]
def _get_glob(self):
return self._glob
def _set_glob(self, ipglob):
(self._start, self._end) = glob_to_iptuple(ipglob)
self._glob = iprange_to_globs(self._start, self._end)[0]
glob = property(_get_glob, _set_glob, None,
'an arbitrary IP address range in glob format.')
def __str__(self):
""":return: IP glob in common representational format."""
return "%s" % self.glob
def __repr__(self):
""":return: Python statement to create an equivalent object"""
return "%s('%s')" % (self.__class__.__name__, self.glob)

448
vendor/netaddr/ip/iana.py vendored Normal file
View File

@@ -0,0 +1,448 @@
#!/usr/bin/env python
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
#
# DISCLAIMER
#
# netaddr is not sponsored nor endorsed by IANA.
#
# Use of data from IANA (Internet Assigned Numbers Authority) is subject to
# copyright and is provided with prior written permission.
#
# IANA data files included with netaddr are not modified in any way but are
# parsed and made available to end users through an API.
#
# See README file and source code for URLs to latest copies of the relevant
# files.
#
#-----------------------------------------------------------------------------
"""
Routines for accessing data published by IANA (Internet Assigned Numbers
Authority).
More details can be found at the following URLs :-
- IANA Home Page - http://www.iana.org/
- IEEE Protocols Information Home Page - http://www.iana.org/protocols/
"""
import sys as _sys
from xml.sax import make_parser, handler
from netaddr.core import Publisher, Subscriber
from netaddr.ip import IPAddress, IPNetwork, IPRange, cidr_abbrev_to_verbose
from netaddr.compat import _dict_items, _callable, _importlib_resources
#: Topic based lookup dictionary for IANA information.
IANA_INFO = {
'IPv4': {},
'IPv6': {},
'IPv6_unicast': {},
'multicast': {},
}
class SaxRecordParser(handler.ContentHandler):
def __init__(self, callback=None):
self._level = 0
self._is_active = False
self._record = None
self._tag_level = None
self._tag_payload = None
self._tag_feeding = None
self._callback = callback
def startElement(self, name, attrs):
self._level += 1
if self._is_active is False:
if name == 'record':
self._is_active = True
self._tag_level = self._level
self._record = {}
if 'date' in attrs:
self._record['date'] = attrs['date']
elif self._level == self._tag_level + 1:
if name == 'xref':
if 'type' in attrs and 'data' in attrs:
l = self._record.setdefault(attrs['type'], [])
l.append(attrs['data'])
else:
self._tag_payload = []
self._tag_feeding = True
else:
self._tag_feeding = False
def endElement(self, name):
if self._is_active is True:
if name == 'record' and self._tag_level == self._level:
self._is_active = False
self._tag_level = None
if _callable(self._callback):
self._callback(self._record)
self._record = None
elif self._level == self._tag_level + 1:
if name != 'xref':
self._record[name] = ''.join(self._tag_payload)
self._tag_payload = None
self._tag_feeding = False
self._level -= 1
def characters(self, content):
if self._tag_feeding is True:
self._tag_payload.append(content)
class XMLRecordParser(Publisher):
"""
A configurable Parser that understands how to parse XML based records.
"""
def __init__(self, fh, **kwargs):
"""
Constructor.
fh - a valid, open file handle to XML based record data.
"""
super(XMLRecordParser, self).__init__()
self.xmlparser = make_parser()
self.xmlparser.setContentHandler(SaxRecordParser(self.consume_record))
self.fh = fh
self.__dict__.update(kwargs)
def process_record(self, rec):
"""
This is the callback method invoked for every record. It is usually
over-ridden by base classes to provide specific record-based logic.
Any record can be vetoed (not passed to registered Subscriber objects)
by simply returning None.
"""
return rec
def consume_record(self, rec):
record = self.process_record(rec)
if record is not None:
self.notify(record)
def parse(self):
"""
Parse and normalises records, notifying registered subscribers with
record data as it is encountered.
"""
self.xmlparser.parse(self.fh)
class IPv4Parser(XMLRecordParser):
"""
A XMLRecordParser that understands how to parse and retrieve data records
from the IANA IPv4 address space file.
It can be found online here :-
- http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
"""
def __init__(self, fh, **kwargs):
"""
Constructor.
fh - a valid, open file handle to an IANA IPv4 address space file.
kwargs - additional parser options.
"""
super(IPv4Parser, self).__init__(fh)
def process_record(self, rec):
"""
Callback method invoked for every record.
See base class method for more details.
"""
record = {}
for key in ('prefix', 'designation', 'date', 'whois', 'status'):
record[key] = str(rec.get(key, '')).strip()
# Strip leading zeros from octet.
if '/' in record['prefix']:
(octet, prefix) = record['prefix'].split('/')
record['prefix'] = '%d/%d' % (int(octet), int(prefix))
record['status'] = record['status'].capitalize()
return record
class IPv6Parser(XMLRecordParser):
"""
A XMLRecordParser that understands how to parse and retrieve data records
from the IANA IPv6 address space file.
It can be found online here :-
- http://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xml
"""
def __init__(self, fh, **kwargs):
"""
Constructor.
fh - a valid, open file handle to an IANA IPv6 address space file.
kwargs - additional parser options.
"""
super(IPv6Parser, self).__init__(fh)
def process_record(self, rec):
"""
Callback method invoked for every record.
See base class method for more details.
"""
record = {
'prefix': str(rec.get('prefix', '')).strip(),
'allocation': str(rec.get('description', '')).strip(),
# HACK: -1 instead of 0 is a hacky hack to get 4291 instead of 3513 from
#
# <xref type="rfc" data="rfc3513"/> was later obsoleted by <xref type="rfc" data="rfc4291"/>
#
# I imagine there's no way to solve this in a general way, maybe we should start returning a list
# of RFC-s here?
'reference': str(rec.get('rfc', [''])[-1]).strip(),
}
return record
class IPv6UnicastParser(XMLRecordParser):
"""
A XMLRecordParser that understands how to parse and retrieve data records
from the IANA IPv6 unicast address assignments file.
It can be found online here :-
- http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml
"""
def __init__(self, fh, **kwargs):
"""
Constructor.
fh - a valid, open file handle to an IANA IPv6 address space file.
kwargs - additional parser options.
"""
super(IPv6UnicastParser, self).__init__(fh)
def process_record(self, rec):
"""
Callback method invoked for every record.
See base class method for more details.
"""
record = {
'status': str(rec.get('status', '')).strip(),
'description': str(rec.get('description', '')).strip(),
'prefix': str(rec.get('prefix', '')).strip(),
'date': str(rec.get('date', '')).strip(),
'whois': str(rec.get('whois', '')).strip(),
}
return record
class MulticastParser(XMLRecordParser):
"""
A XMLRecordParser that knows how to process the IANA IPv4 multicast address
allocation file.
It can be found online here :-
- http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xml
"""
def __init__(self, fh, **kwargs):
"""
Constructor.
fh - a valid, open file handle to an IANA IPv4 multicast address
allocation file.
kwargs - additional parser options.
"""
super(MulticastParser, self).__init__(fh)
def normalise_addr(self, addr):
"""
Removes variations from address entries found in this particular file.
"""
if '-' in addr:
(a1, a2) = addr.split('-')
o1 = a1.strip().split('.')
o2 = a2.strip().split('.')
return '%s-%s' % ('.'.join([str(int(i)) for i in o1]),
'.'.join([str(int(i)) for i in o2]))
else:
o1 = addr.strip().split('.')
return '.'.join([str(int(i)) for i in o1])
def process_record(self, rec):
"""
Callback method invoked for every record.
See base class method for more details.
"""
if 'addr' in rec:
record = {
'address': self.normalise_addr(str(rec['addr'])),
'descr': str(rec.get('description', '')),
}
return record
class DictUpdater(Subscriber):
"""
Concrete Subscriber that inserts records received from a Publisher into a
dictionary.
"""
def __init__(self, dct, topic, unique_key):
"""
Constructor.
dct - lookup dict or dict like object to insert records into.
topic - high-level category name of data to be processed.
unique_key - key name in data dict that uniquely identifies it.
"""
self.dct = dct
self.topic = topic
self.unique_key = unique_key
def update(self, data):
"""
Callback function used by Publisher to notify this Subscriber about
an update. Stores topic based information into dictionary passed to
constructor.
"""
data_id = data[self.unique_key]
if self.topic == 'IPv4':
cidr = IPNetwork(cidr_abbrev_to_verbose(data_id))
self.dct[cidr] = data
elif self.topic == 'IPv6':
cidr = IPNetwork(cidr_abbrev_to_verbose(data_id))
self.dct[cidr] = data
elif self.topic == 'IPv6_unicast':
cidr = IPNetwork(data_id)
self.dct[cidr] = data
elif self.topic == 'multicast':
iprange = None
if '-' in data_id:
# See if we can manage a single CIDR.
(first, last) = data_id.split('-')
iprange = IPRange(first, last)
cidrs = iprange.cidrs()
if len(cidrs) == 1:
iprange = cidrs[0]
else:
iprange = IPAddress(data_id)
self.dct[iprange] = data
def load_info():
"""
Parse and load internal IANA data lookups with the latest information from
data files.
"""
ipv4 = IPv4Parser(_importlib_resources.open_binary(__package__, 'ipv4-address-space.xml'))
ipv4.attach(DictUpdater(IANA_INFO['IPv4'], 'IPv4', 'prefix'))
ipv4.parse()
ipv6 = IPv6Parser(_importlib_resources.open_binary(__package__, 'ipv6-address-space.xml'))
ipv6.attach(DictUpdater(IANA_INFO['IPv6'], 'IPv6', 'prefix'))
ipv6.parse()
ipv6ua = IPv6UnicastParser(
_importlib_resources.open_binary(__package__, 'ipv6-unicast-address-assignments.xml'),
)
ipv6ua.attach(DictUpdater(IANA_INFO['IPv6_unicast'], 'IPv6_unicast', 'prefix'))
ipv6ua.parse()
mcast = MulticastParser(_importlib_resources.open_binary(__package__, 'multicast-addresses.xml'))
mcast.attach(DictUpdater(IANA_INFO['multicast'], 'multicast', 'address'))
mcast.parse()
def pprint_info(fh=None):
"""
Pretty prints IANA information to filehandle.
"""
if fh is None:
fh = _sys.stdout
for category in sorted(IANA_INFO):
fh.write('-' * len(category) + "\n")
fh.write(category + "\n")
fh.write('-' * len(category) + "\n")
ipranges = IANA_INFO[category]
for iprange in sorted(ipranges):
details = ipranges[iprange]
fh.write('%-45r' % (iprange) + details + "\n")
def _within_bounds(ip, ip_range):
# Boundary checking for multiple IP classes.
if hasattr(ip_range, 'first'):
# IP network or IP range.
return ip in ip_range
elif hasattr(ip_range, 'value'):
# IP address.
return ip == ip_range
raise Exception('Unsupported IP range or address: %r!' % (ip_range,))
def query(ip_addr):
"""Returns informational data specific to this IP address."""
info = {}
if ip_addr.version == 4:
for cidr, record in _dict_items(IANA_INFO['IPv4']):
if _within_bounds(ip_addr, cidr):
info.setdefault('IPv4', [])
info['IPv4'].append(record)
if ip_addr.is_multicast():
for iprange, record in _dict_items(IANA_INFO['multicast']):
if _within_bounds(ip_addr, iprange):
info.setdefault('Multicast', [])
info['Multicast'].append(record)
elif ip_addr.version == 6:
for cidr, record in _dict_items(IANA_INFO['IPv6']):
if _within_bounds(ip_addr, cidr):
info.setdefault('IPv6', [])
info['IPv6'].append(record)
for cidr, record in _dict_items(IANA_INFO['IPv6_unicast']):
if _within_bounds(ip_addr, cidr):
info.setdefault('IPv6_unicast', [])
info['IPv6_unicast'].append(record)
return info
# On module import, read IANA data files and populate lookups dict.
load_info()

2644
vendor/netaddr/ip/ipv4-address-space.xml vendored Normal file

File diff suppressed because it is too large Load Diff

198
vendor/netaddr/ip/ipv6-address-space.xml vendored Normal file
View File

@@ -0,0 +1,198 @@
<?xml version='1.0' encoding='UTF-8'?>
<?xml-stylesheet type="text/xsl" href="ipv6-address-space.xsl"?>
<?oxygen RNGSchema="ipv6-address-space.rng" type="xml"?>
<registry xmlns="http://www.iana.org/assignments" id="ipv6-address-space">
<title>Internet Protocol Version 6 Address Space</title>
<updated>2019-09-13</updated>
<note>The IPv6 address management function was formally delegated to
IANA in December 1995 <xref type="rfc" data="rfc1881"/>. The registration procedure
was confirmed with the IETF Chair in March 2010.
As stated in RFC3513, IANA should limit its allocation of IPv6-unicast
address space to the range of addresses that start with binary value 001.
The rest of the global unicast address space (approximately 85% of the IPv6
address space) is reserved for future definition and use, and is not to be
assigned by IANA at this time.
While <xref type="rfc" data="rfc3513"/> was obsoleted by <xref type="rfc" data="rfc4291"/>,
the guidiance provided to IANA did not change regarding the allocation of IPv6
unicast addresses.
</note>
<registry id="ipv6-address-space-1">
<registration_rule>IESG Approval</registration_rule>
<record>
<prefix>0000::/8</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes>
<xref type="note" data="1"/>
<xref type="note" data="2"/>
<xref type="note" data="3"/>
<xref type="note" data="4"/>
<xref type="note" data="5"/>
<xref type="note" data="6"/>
</notes>
</record>
<record>
<prefix>0100::/8</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes>0100::/64 reserved for Discard-Only Address Block <xref type="rfc" data="rfc6666"/>.
Complete registration details are found in <xref type="registry" data="iana-ipv6-special-registry"/>.</notes>
</record>
<record>
<prefix>0200::/7</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc4048"/>
<notes>Deprecated as of December 2004 <xref type="rfc" data="rfc4048"/>.
Formerly an OSI NSAP-mapped prefix set <xref type="rfc" data="rfc4548"/>.</notes>
</record>
<record>
<prefix>0400::/6</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>0800::/5</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>1000::/4</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>2000::/3</prefix>
<description>Global Unicast</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes>The IPv6 Unicast space encompasses the entire IPv6 address range
with the exception of ff00::/8, per <xref type="rfc" data="rfc4291"/>. IANA unicast address
assignments are currently limited to the IPv6 unicast address
range of 2000::/3. IANA assignments from this block are registered
in <xref type="registry" data="ipv6-unicast-address-assignments"/>.
<xref type="note" data="7"/>
<xref type="note" data="8"/>
<xref type="note" data="9"/>
<xref type="note" data="10"/>
<xref type="note" data="11"/>
<xref type="note" data="12"/>
<xref type="note" data="13"/>
<xref type="note" data="14"/>
<xref type="note" data="15"/>
</notes>
</record>
<record>
<prefix>4000::/3</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>6000::/3</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>8000::/3</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>a000::/3</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>c000::/3</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>e000::/4</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>f000::/5</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>f800::/6</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>fc00::/7</prefix>
<description>Unique Local Unicast</description>
<xref type="rfc" data="rfc4193"/>
<notes>For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</notes>
</record>
<record>
<prefix>fe00::/9</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes/>
</record>
<record>
<prefix>fe80::/10</prefix>
<description>Link-Scoped Unicast</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes>Reserved by protocol. For authoritative registration, see <xref type="registry" data="iana-ipv6-special-registry"/>.</notes>
</record>
<record>
<prefix>fec0::/10</prefix>
<description>Reserved by IETF</description>
<xref type="rfc" data="rfc3879"/>
<notes>Deprecated by <xref type="rfc" data="rfc3879"/> in September 2004. Formerly a Site-Local scoped address prefix.</notes>
</record>
<record>
<prefix>ff00::/8</prefix>
<description>Multicast</description>
<xref type="rfc" data="rfc3513"/><xref type="rfc" data="rfc4291"/>
<notes>IANA assignments from this block are registered in <xref type="registry" data="ipv6-multicast-addresses"/>.</notes>
</record>
<footnote anchor="1">::1/128 reserved for Loopback Address <xref type="rfc" data="rfc4291"/>.
Reserved by protocol. For authoritative registration, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="2">::/128 reserved for Unspecified Address <xref type="rfc" data="rfc4291"/>.
Reserved by protocol. For authoritative registration, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="3">::ffff:0:0/96 reserved for IPv4-mapped Address <xref type="rfc" data="rfc4291"/>.
Reserved by protocol. For authoritative registration, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="4">0::/96 deprecated by <xref type="rfc" data="rfc4291"/>. Formerly defined as the "IPv4-compatible IPv6 address" prefix.</footnote>
<footnote anchor="5">The "Well Known Prefix" 64:ff9b::/96 is used in an algorithmic mapping between IPv4 to IPv6 addresses <xref type="rfc" data="rfc6052"/>.</footnote>
<footnote anchor="6">64:ff9b:1::/48 reserved for Local-Use IPv4/IPv6 Translation <xref type="rfc" data="rfc8215"/>.</footnote>
<footnote anchor="7">2001:0::/23 reserved for IETF Protocol Assignments <xref type="rfc" data="rfc2928"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="8">2001:0::/32 reserved for TEREDO <xref type="rfc" data="rfc4380"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="9">2001:2::/48 reserved for Benchmarking <xref type="rfc" data="rfc5180"/><xref type="rfc-errata" data="1752"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="10">2001:3::/32 reserved for AMT <xref type="rfc" data="rfc7450"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="11">2001:4:112::/48 reserved for AS112-v6 <xref type="rfc" data="rfc7535"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="12">2001:10::/28 deprecated (formerly ORCHID) <xref type="rfc" data="rfc4843"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="13">2001:20::/28 reserved for ORCHIDv2 <xref type="rfc" data="rfc7343"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="14">2001:db8::/32 reserved for Documentation <xref type="rfc" data="rfc3849"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<footnote anchor="15">2002::/16 reserved for 6to4 <xref type="rfc" data="rfc3056"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</footnote>
<people/>
</registry>
</registry>

View File

@@ -0,0 +1,435 @@
<?xml version='1.0' encoding='UTF-8'?>
<?xml-stylesheet type="text/xsl" href="ipv6-unicast-address-assignments.xsl"?>
<?oxygen RNGSchema="ipv6-unicast-address-assignments.rng" type="xml"?>
<registry xmlns="http://www.iana.org/assignments" id="ipv6-unicast-address-assignments">
<title>IPv6 Global Unicast Address Assignments</title>
<category>Internet Protocol version 6 (IPv6) Global Unicast Allocations</category>
<updated>2019-11-06</updated>
<xref type="rfc" data="rfc7249"/>
<registration_rule>Allocations to RIRs are made in line with the Global Policy published at
<xref type="uri" data="http://www.icann.org/en/resources/policy/global-addressing"/>.
All other assignments require IETF Review.</registration_rule>
<description>The allocation of Internet Protocol version 6 (IPv6) unicast address space is listed
here. References to the various other registries detailing the use of the IPv6 address
space can be found in the <xref type="registry" data="ipv6-address-space">IPv6 Address Space registry</xref>.</description>
<note>The assignable Global Unicast Address space is defined in <xref type="rfc" data="rfc3513"/> as the address block
defined by the prefix 2000::/3. <xref type="rfc" data="rfc3513"/> was later obsoleted by <xref type="rfc" data="rfc4291"/>. All address
space in this block not listed in the table below is reserved by IANA for future
allocation.
</note>
<record date="1999-07-01">
<prefix>2001:0000::/23</prefix>
<description>IANA</description>
<whois>whois.iana.org</whois>
<status>ALLOCATED</status>
<notes>2001:0000::/23 is reserved for IETF Protocol Assignments <xref type="rfc" data="rfc2928"/>.
2001:0000::/32 is reserved for TEREDO <xref type="rfc" data="rfc4380"/>.
2001:1::1/128 is reserved for Port Control Protocol Anycast <xref type="rfc" data="rfc7723"/>.
2001:2::/48 is reserved for Benchmarking <xref type="rfc" data="rfc5180"/><xref type="rfc-errata" data="1752"/>.
2001:3::/32 is reserved for AMT <xref type="rfc" data="rfc7450"/>.
2001:4:112::/48 is reserved for AS112-v6 <xref type="rfc" data="rfc7535"/>.
2001:10::/28 is deprecated (previously ORCHID) <xref type="rfc" data="rfc4843"/>.
2001:20::/28 is reserved for ORCHIDv2 <xref type="rfc" data="rfc7343"/>.
2001:db8::/32 is reserved for Documentation <xref type="rfc" data="rfc3849"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</notes>
</record>
<record date="1999-07-01">
<prefix>2001:0200::/23</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes/>
</record>
<record date="1999-07-01">
<prefix>2001:0400::/23</prefix>
<description>ARIN</description>
<whois>whois.arin.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.arin.net/registry</server>
<server>http://rdap.arin.net/registry</server>
</rdap>
<notes/>
</record>
<record date="1999-07-01">
<prefix>2001:0600::/23</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2002-11-02">
<prefix>2001:0800::/22</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes>2001:0800::/23 was allocated on 2002-05-02. The more recent
allocation (2002-11-02) incorporates the previous allocation.</notes>
</record>
<record date="2002-05-02">
<prefix>2001:0c00::/23</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes>2001:db8::/32 reserved for Documentation <xref type="rfc" data="rfc3849"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</notes>
</record>
<record date="2003-01-01">
<prefix>2001:0e00::/23</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes/>
</record>
<record date="2002-11-01">
<prefix>2001:1200::/23</prefix>
<description>LACNIC</description>
<whois>whois.lacnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.lacnic.net/rdap/</server>
</rdap>
<notes/>
</record>
<record date="2003-07-01">
<prefix>2001:1400::/22</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes>2001:1400::/23 was allocated on 2003-02-01. The more recent
allocation (2003-07-01) incorporates the previous allocation.</notes>
</record>
<record date="2003-04-01">
<prefix>2001:1800::/23</prefix>
<description>ARIN</description>
<whois>whois.arin.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.arin.net/registry</server>
<server>http://rdap.arin.net/registry</server>
</rdap>
<notes/>
</record>
<record date="2004-01-01">
<prefix>2001:1a00::/23</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-05-04">
<prefix>2001:1c00::/22</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2019-03-12">
<prefix>2001:2000::/19</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes>2001:2000::/20, 2001:3000::/21, and 2001:3800::/22
were allocated on 2004-05-04. The more recent allocation
(2019-03-12) incorporates all these previous allocations.</notes>
</record>
<record date="2004-06-11">
<prefix>2001:4000::/23</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-06-01">
<prefix>2001:4200::/23</prefix>
<description>AFRINIC</description>
<whois>whois.afrinic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.afrinic.net/rdap/</server>
<server>http://rdap.afrinic.net/rdap/</server>
</rdap>
<notes/>
</record>
<record date="2004-06-11">
<prefix>2001:4400::/23</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-08-17">
<prefix>2001:4600::/23</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-08-24">
<prefix>2001:4800::/23</prefix>
<description>ARIN</description>
<whois>whois.arin.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.arin.net/registry</server>
<server>http://rdap.arin.net/registry</server>
</rdap>
<notes/>
</record>
<record date="2004-10-15">
<prefix>2001:4a00::/23</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-12-17">
<prefix>2001:4c00::/23</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-09-10">
<prefix>2001:5000::/20</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-11-30">
<prefix>2001:8000::/19</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes/>
</record>
<record date="2004-11-30">
<prefix>2001:a000::/20</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes/>
</record>
<record date="2006-03-08">
<prefix>2001:b000::/20</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes/>
</record>
<record date="2001-02-01">
<prefix>2002:0000::/16</prefix>
<description>6to4</description>
<whois/>
<status>ALLOCATED</status>
<notes>2002::/16 is reserved for 6to4 <xref type="rfc" data="rfc3056"/>.
For complete registration details, see <xref type="registry" data="iana-ipv6-special-registry"/>.</notes>
</record>
<record date="2005-01-12">
<prefix>2003:0000::/18</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2006-10-03">
<prefix>2400:0000::/12</prefix>
<description>APNIC</description>
<whois>whois.apnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.apnic.net/</server>
</rdap>
<notes>2400:0000::/19 was allocated on 2005-05-20. 2400:2000::/19 was allocated on 2005-07-08. 2400:4000::/21 was
allocated on 2005-08-08. 2404:0000::/23 was allocated on 2006-01-19. The more recent allocation (2006-10-03)
incorporates all these previous allocations.</notes>
</record>
<record date="2006-10-03">
<prefix>2600:0000::/12</prefix>
<description>ARIN</description>
<whois>whois.arin.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.arin.net/registry</server>
<server>http://rdap.arin.net/registry</server>
</rdap>
<notes>2600:0000::/22, 2604:0000::/22, 2608:0000::/22 and 260c:0000::/22 were allocated on 2005-04-19. The more
recent allocation (2006-10-03) incorporates all these previous allocations.</notes>
</record>
<record date="2005-11-17">
<prefix>2610:0000::/23</prefix>
<description>ARIN</description>
<whois>whois.arin.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.arin.net/registry</server>
<server>http://rdap.arin.net/registry</server>
</rdap>
<notes/>
</record>
<record date="2006-09-12">
<prefix>2620:0000::/23</prefix>
<description>ARIN</description>
<whois>whois.arin.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.arin.net/registry</server>
<server>http://rdap.arin.net/registry</server>
</rdap>
<notes/>
</record>
<record date="2019-11-06">
<prefix>2630:0000::/12</prefix>
<description>ARIN</description>
<whois>whois.arin.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.arin.net/registry</server>
<server>http://rdap.arin.net/registry</server>
</rdap>
<notes/>
</record>
<record date="2006-10-03">
<prefix>2800:0000::/12</prefix>
<description>LACNIC</description>
<whois>whois.lacnic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.lacnic.net/rdap/</server>
</rdap>
<notes>2800:0000::/23 was allocated on 2005-11-17. The more recent allocation (2006-10-03) incorporates the
previous allocation.</notes>
</record>
<record date="2006-10-03">
<prefix>2a00:0000::/12</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes>2a00:0000::/21 was originally allocated on 2005-04-19. 2a01:0000::/23 was allocated on 2005-07-14.
2a01:0000::/16 (incorporating the 2a01:0000::/23) was allocated on 2005-12-15. The more recent allocation
(2006-10-03) incorporates these previous allocations.</notes>
</record>
<record date="2019-06-05">
<prefix>2a10:0000::/12</prefix>
<description>RIPE NCC</description>
<whois>whois.ripe.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.db.ripe.net/</server>
</rdap>
<notes/>
</record>
<record date="2006-10-03">
<prefix>2c00:0000::/12</prefix>
<description>AFRINIC</description>
<whois>whois.afrinic.net</whois>
<status>ALLOCATED</status>
<rdap>
<server>https://rdap.afrinic.net/rdap/</server>
<server>http://rdap.afrinic.net/rdap/</server>
</rdap>
<notes/>
</record>
<record date="1999-07-01">
<prefix>2d00:0000::/8</prefix>
<description>IANA</description>
<whois/>
<status>RESERVED</status>
<notes/>
</record>
<record date="1999-07-01">
<prefix>2e00:0000::/7</prefix>
<description>IANA</description>
<whois/>
<status>RESERVED</status>
<notes/>
</record>
<record date="1999-07-01">
<prefix>3000:0000::/4</prefix>
<description>IANA</description>
<whois/>
<status>RESERVED</status>
<notes/>
</record>
<record date="2008-04">
<prefix>3ffe::/16</prefix>
<description>IANA</description>
<whois/>
<status>RESERVED</status>
<notes>3ffe:831f::/32 was used for Teredo in some old but widely distributed networking stacks. This usage is
deprecated in favor of 2001::/32, which was allocated for the purpose in <xref type="rfc" data="rfc4380"/>.
3ffe::/16 and 5f00::/8 were used for the 6bone but were returned. <xref type="rfc" data="rfc5156"/></notes>
</record>
<record date="2008-04">
<prefix>5f00::/8</prefix>
<description>IANA</description>
<whois/>
<status>RESERVED</status>
<notes>3ffe::/16 and 5f00::/8 were used for the 6bone but were returned. <xref type="rfc" data="rfc5156"/></notes>
</record>
<people/>
</registry>

4441
vendor/netaddr/ip/multicast-addresses.xml vendored Normal file

File diff suppressed because it is too large Load Diff

117
vendor/netaddr/ip/nmap.py vendored Normal file
View File

@@ -0,0 +1,117 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""
Routines for dealing with nmap-style IPv4 address ranges.
Based on nmap's Target Specification :-
http://nmap.org/book/man-target-specification.html
"""
from netaddr.core import AddrFormatError
from netaddr.ip import IPAddress, IPNetwork
from netaddr.compat import _iter_range, _is_str, _iter_next
def _nmap_octet_target_values(spec):
# Generates sequence of values for an individual octet as defined in the
# nmap Target Specification.
values = set()
for element in spec.split(','):
if '-' in element:
left, right = element.split('-', 1)
if not left:
left = 0
if not right:
right = 255
low = int(left)
high = int(right)
if not ((0 <= low <= 255) and (0 <= high <= 255)):
raise ValueError('octet value overflow for spec %s!' % (spec,))
if low > high:
raise ValueError('left side of hyphen must be <= right %r' % (element,))
for octet in _iter_range(low, high + 1):
values.add(octet)
else:
octet = int(element)
if not (0 <= octet <= 255):
raise ValueError('octet value overflow for spec %s!' % (spec,))
values.add(octet)
return sorted(values)
def _generate_nmap_octet_ranges(nmap_target_spec):
# Generate 4 lists containing all octets defined by a given nmap Target
# specification.
if not _is_str(nmap_target_spec):
raise TypeError('string expected, not %s' % type(nmap_target_spec))
if not nmap_target_spec:
raise ValueError('nmap target specification cannot be blank!')
tokens = nmap_target_spec.split('.')
if len(tokens) != 4:
raise AddrFormatError('invalid nmap range: %s' % (nmap_target_spec,))
return (_nmap_octet_target_values(tokens[0]),
_nmap_octet_target_values(tokens[1]),
_nmap_octet_target_values(tokens[2]),
_nmap_octet_target_values(tokens[3]))
def _parse_nmap_target_spec(target_spec):
if '/' in target_spec:
_, prefix = target_spec.split('/', 1)
if not (0 < int(prefix) < 33):
raise AddrFormatError('CIDR prefix expected, not %s' % (prefix,))
net = IPNetwork(target_spec)
if net.version != 4:
raise AddrFormatError('CIDR only support for IPv4!')
for ip in net:
yield ip
elif ':' in target_spec:
# nmap only currently supports IPv6 addresses without prefixes.
yield IPAddress(target_spec)
else:
octet_ranges = _generate_nmap_octet_ranges(target_spec)
for w in octet_ranges[0]:
for x in octet_ranges[1]:
for y in octet_ranges[2]:
for z in octet_ranges[3]:
yield IPAddress("%d.%d.%d.%d" % (w, x, y, z), 4)
def valid_nmap_range(target_spec):
"""
:param target_spec: an nmap-style IP range target specification.
:return: ``True`` if IP range target spec is valid, ``False`` otherwise.
"""
try:
_iter_next(_parse_nmap_target_spec(target_spec))
return True
except (TypeError, ValueError, AddrFormatError):
pass
return False
def iter_nmap_range(*nmap_target_spec):
"""
An generator that yields IPAddress objects from defined by nmap target
specifications.
See https://nmap.org/book/man-target-specification.html for details.
:param *nmap_target_spec: one or more nmap IP range target specification.
:return: an iterator producing IPAddress objects for each IP in the target spec(s).
"""
for target_spec in nmap_target_spec:
for addr in _parse_nmap_target_spec(target_spec):
yield addr

61
vendor/netaddr/ip/rfc1924.py vendored Normal file
View File

@@ -0,0 +1,61 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""A basic implementation of RFC 1924 ;-)"""
from netaddr.core import AddrFormatError
from netaddr.ip import IPAddress
from netaddr.compat import _zip
def chr_range(low, high):
"""Returns all characters between low and high chars."""
return [chr(i) for i in range(ord(low), ord(high) + 1)]
#: Base 85 integer index to character lookup table.
BASE_85 = (
chr_range('0', '9') + chr_range('A', 'Z') +
chr_range('a', 'z') +
['!', '#', '$', '%', '&', '(', ')', '*', '+', '-', ';', '<', '=', '>',
'?', '@', '^', '_', '`', '{', '|', '}', '~']
)
#: Base 85 digit to integer lookup table.
BASE_85_DICT = dict(_zip(BASE_85, range(0, 86)))
def ipv6_to_base85(addr):
"""Convert a regular IPv6 address to base 85."""
ip = IPAddress(addr)
int_val = int(ip)
remainder = []
while int_val > 0:
remainder.append(int_val % 85)
int_val //= 85
encoded = ''.join([BASE_85[w] for w in reversed(remainder)])
leading_zeroes = (20 - len(encoded)) * "0"
return leading_zeroes + encoded
def base85_to_ipv6(addr):
"""
Convert a base 85 IPv6 address to its hexadecimal format.
"""
tokens = list(addr)
if len(tokens) != 20:
raise AddrFormatError('Invalid base 85 IPv6 address: %r' % (addr,))
result = 0
for i, num in enumerate(reversed(tokens)):
num = BASE_85_DICT[num]
result += (num * 85 ** i)
ip = IPAddress(result, 6)
return str(ip)

748
vendor/netaddr/ip/sets.py vendored Normal file
View File

@@ -0,0 +1,748 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""Set based operations for IP addresses and subnets."""
import itertools as _itertools
from netaddr.ip import (IPNetwork, IPAddress, IPRange, cidr_merge,
cidr_exclude, iprange_to_cidrs)
from netaddr.compat import _sys_maxint, _dict_keys, _int_type
def _subtract(supernet, subnets, subnet_idx, ranges):
"""Calculate IPSet([supernet]) - IPSet(subnets).
Assumptions: subnets is sorted, subnet_idx points to the first
element in subnets that is a subnet of supernet.
Results are appended to the ranges parameter as tuples of in format
(version, first, last). Return value is the first subnet_idx that
does not point to a subnet of supernet (or len(subnets) if all
subsequents items are a subnet of supernet).
"""
version = supernet._module.version
subnet = subnets[subnet_idx]
if subnet.first > supernet.first:
ranges.append((version, supernet.first, subnet.first - 1))
subnet_idx += 1
prev_subnet = subnet
while subnet_idx < len(subnets):
cur_subnet = subnets[subnet_idx]
if cur_subnet not in supernet:
break
if prev_subnet.last + 1 == cur_subnet.first:
# two adjacent, non-mergable IPNetworks
pass
else:
ranges.append((version, prev_subnet.last + 1, cur_subnet.first - 1))
subnet_idx += 1
prev_subnet = cur_subnet
first = prev_subnet.last + 1
last = supernet.last
if first <= last:
ranges.append((version, first, last))
return subnet_idx
def _iter_merged_ranges(sorted_ranges):
"""Iterate over sorted_ranges, merging where possible
Sorted ranges must be a sorted iterable of (version, first, last) tuples.
Merging occurs for pairs like [(4, 10, 42), (4, 43, 100)] which is merged
into (4, 10, 100), and leads to return value
( IPAddress(10, 4), IPAddress(100, 4) ), which is suitable input for the
iprange_to_cidrs function.
"""
if not sorted_ranges:
return
current_version, current_start, current_stop = sorted_ranges[0]
for next_version, next_start, next_stop in sorted_ranges[1:]:
if next_start == current_stop + 1 and next_version == current_version:
# Can be merged.
current_stop = next_stop
continue
# Cannot be merged.
yield (IPAddress(current_start, current_version),
IPAddress(current_stop, current_version))
current_start = next_start
current_stop = next_stop
current_version = next_version
yield (IPAddress(current_start, current_version),
IPAddress(current_stop, current_version))
class IPSet(object):
"""
Represents an unordered collection (set) of unique IP addresses and
subnets.
"""
__slots__ = ('_cidrs', '__weakref__')
def __init__(self, iterable=None, flags=0):
"""
Constructor.
:param iterable: (optional) an iterable containing IP addresses,
subnets or ranges.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
if isinstance(iterable, IPNetwork):
self._cidrs = {iterable.cidr: True}
elif isinstance(iterable, IPRange):
self._cidrs = dict.fromkeys(
iprange_to_cidrs(iterable[0], iterable[-1]), True)
elif isinstance(iterable, IPSet):
self._cidrs = dict.fromkeys(iterable.iter_cidrs(), True)
else:
self._cidrs = {}
if iterable is not None:
mergeable = []
for addr in iterable:
if isinstance(addr, _int_type):
addr = IPAddress(addr, flags=flags)
mergeable.append(addr)
for cidr in cidr_merge(mergeable):
self._cidrs[cidr] = True
def __getstate__(self):
""":return: Pickled state of an ``IPSet`` object."""
return tuple([cidr.__getstate__() for cidr in self._cidrs])
def __setstate__(self, state):
"""
:param state: data used to unpickle a pickled ``IPSet`` object.
"""
self._cidrs = dict.fromkeys(
(IPNetwork((value, prefixlen), version=version)
for value, prefixlen, version in state),
True)
def _compact_single_network(self, added_network):
"""
Same as compact(), but assume that added_network is the only change and
that this IPSet was properly compacted before added_network was added.
This allows to perform compaction much faster. added_network must
already be present in self._cidrs.
"""
added_first = added_network.first
added_last = added_network.last
added_version = added_network.version
# Check for supernets and subnets of added_network.
if added_network._prefixlen == added_network._module.width:
# This is a single IP address, i.e. /32 for IPv4 or /128 for IPv6.
# It does not have any subnets, so we only need to check for its
# potential supernets.
for potential_supernet in added_network.supernet():
if potential_supernet in self._cidrs:
del self._cidrs[added_network]
return
else:
# IPNetworks from self._cidrs that are subnets of added_network.
to_remove = []
for cidr in self._cidrs:
if (cidr._module.version != added_version or cidr == added_network):
# We found added_network or some network of a different version.
continue
first = cidr.first
last = cidr.last
if first >= added_first and last <= added_last:
# cidr is a subnet of added_network. Remember to remove it.
to_remove.append(cidr)
elif first <= added_first and last >= added_last:
# cidr is a supernet of added_network. Remove added_network.
del self._cidrs[added_network]
# This IPSet was properly compacted before. Since added_network
# is removed now, it must again be properly compacted -> done.
assert (not to_remove)
return
for item in to_remove:
del self._cidrs[item]
# Check if added_network can be merged with another network.
# Note that merging can only happen between networks of the same
# prefixlen. This just leaves 2 candidates: The IPNetworks just before
# and just after the added_network.
# This can be reduced to 1 candidate: 10.0.0.0/24 and 10.0.1.0/24 can
# be merged into into 10.0.0.0/23. But 10.0.1.0/24 and 10.0.2.0/24
# cannot be merged. With only 1 candidate, we might as well make a
# dictionary lookup.
shift_width = added_network._module.width - added_network.prefixlen
while added_network.prefixlen != 0:
# figure out if the least significant bit of the network part is 0 or 1.
the_bit = (added_network._value >> shift_width) & 1
if the_bit:
candidate = added_network.previous()
else:
candidate = added_network.next()
if candidate not in self._cidrs:
# The only possible merge does not work -> merge done
return
# Remove added_network&candidate, add merged network.
del self._cidrs[candidate]
del self._cidrs[added_network]
added_network.prefixlen -= 1
# Be sure that we set the host bits to 0 when we move the prefixlen.
# Otherwise, adding 255.255.255.255/32 will result in a merged
# 255.255.255.255/24 network, but we want 255.255.255.0/24.
shift_width += 1
added_network._value = (added_network._value >> shift_width) << shift_width
self._cidrs[added_network] = True
def compact(self):
"""
Compact internal list of `IPNetwork` objects using a CIDR merge.
"""
cidrs = cidr_merge(self._cidrs)
self._cidrs = dict.fromkeys(cidrs, True)
def __hash__(self):
"""
Raises ``TypeError`` if this method is called.
.. note:: IPSet objects are not hashable and cannot be used as \
dictionary keys or as members of other sets. \
"""
raise TypeError('IP sets are unhashable!')
def __contains__(self, ip):
"""
:param ip: An IP address or subnet.
:return: ``True`` if IP address or subnet is a member of this IP set.
"""
# Iterating over self._cidrs is an O(n) operation: 1000 items in
# self._cidrs would mean 1000 loops. Iterating over all possible
# supernets loops at most 32 times for IPv4 or 128 times for IPv6,
# no matter how many CIDRs this object contains.
supernet = IPNetwork(ip)
if supernet in self._cidrs:
return True
while supernet._prefixlen:
supernet._prefixlen -= 1
if supernet in self._cidrs:
return True
return False
def __nonzero__(self):
"""Return True if IPSet contains at least one IP, else False"""
return bool(self._cidrs)
__bool__ = __nonzero__ # Python 3.x.
def __iter__(self):
"""
:return: an iterator over the IP addresses within this IP set.
"""
return _itertools.chain(*sorted(self._cidrs))
def iter_cidrs(self):
"""
:return: an iterator over individual IP subnets within this IP set.
"""
return sorted(self._cidrs)
def add(self, addr, flags=0):
"""
Adds an IP address or subnet or IPRange to this IP set. Has no effect if
it is already present.
Note that where possible the IP address or subnet is merged with other
members of the set to form more concise CIDR blocks.
:param addr: An IP address or subnet in either string or object form, or
an IPRange object.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
if isinstance(addr, IPRange):
new_cidrs = dict.fromkeys(
iprange_to_cidrs(addr[0], addr[-1]), True)
self._cidrs.update(new_cidrs)
self.compact()
return
if isinstance(addr, IPNetwork):
# Networks like 10.1.2.3/8 need to be normalized to 10.0.0.0/8
addr = addr.cidr
elif isinstance(addr, _int_type):
addr = IPNetwork(IPAddress(addr, flags=flags))
else:
addr = IPNetwork(addr)
self._cidrs[addr] = True
self._compact_single_network(addr)
def remove(self, addr, flags=0):
"""
Removes an IP address or subnet or IPRange from this IP set. Does
nothing if it is not already a member.
Note that this method behaves more like discard() found in regular
Python sets because it doesn't raise KeyError exceptions if the
IP address or subnet is question does not exist. It doesn't make sense
to fully emulate that behaviour here as IP sets contain groups of
individual IP addresses as individual set members using IPNetwork
objects.
:param addr: An IP address or subnet, or an IPRange.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
if isinstance(addr, IPRange):
cidrs = iprange_to_cidrs(addr[0], addr[-1])
for cidr in cidrs:
self.remove(cidr)
return
if isinstance(addr, _int_type):
addr = IPAddress(addr, flags=flags)
else:
addr = IPNetwork(addr)
# This add() is required for address blocks provided that are larger
# than blocks found within the set but have overlaps. e.g. :-
#
# >>> IPSet(['192.0.2.0/24']).remove('192.0.2.0/23')
# IPSet([])
#
self.add(addr)
remainder = None
matching_cidr = None
# Search for a matching CIDR and exclude IP from it.
for cidr in self._cidrs:
if addr in cidr:
remainder = cidr_exclude(cidr, addr)
matching_cidr = cidr
break
# Replace matching CIDR with remaining CIDR elements.
if remainder is not None:
del self._cidrs[matching_cidr]
for cidr in remainder:
self._cidrs[cidr] = True
# No call to self.compact() is needed. Removing an IPNetwork cannot
# create mergable networks.
def pop(self):
"""
Removes and returns an arbitrary IP address or subnet from this IP
set.
:return: An IP address or subnet.
"""
return self._cidrs.popitem()[0]
def isdisjoint(self, other):
"""
:param other: an IP set.
:return: ``True`` if this IP set has no elements (IP addresses
or subnets) in common with other. Intersection *must* be an
empty set.
"""
result = self.intersection(other)
return not result
def copy(self):
""":return: a shallow copy of this IP set."""
obj_copy = self.__class__()
obj_copy._cidrs.update(self._cidrs)
return obj_copy
def update(self, iterable, flags=0):
"""
Update the contents of this IP set with the union of itself and
other IP set.
:param iterable: an iterable containing IP addresses, subnets or ranges.
:param flags: decides which rules are applied to the interpretation
of the addr value. See the netaddr.core namespace documentation
for supported constant values.
"""
if isinstance(iterable, IPSet):
self._cidrs = dict.fromkeys(
(ip for ip in cidr_merge(_dict_keys(self._cidrs)
+ _dict_keys(iterable._cidrs))), True)
return
elif isinstance(iterable, (IPNetwork, IPRange)):
self.add(iterable)
return
if not hasattr(iterable, '__iter__'):
raise TypeError('an iterable was expected!')
# An iterable containing IP addresses or subnets.
mergeable = []
for addr in iterable:
if isinstance(addr, _int_type):
addr = IPAddress(addr, flags=flags)
mergeable.append(addr)
for cidr in cidr_merge(_dict_keys(self._cidrs) + mergeable):
self._cidrs[cidr] = True
self.compact()
def clear(self):
"""Remove all IP addresses and subnets from this IP set."""
self._cidrs = {}
def __eq__(self, other):
"""
:param other: an IP set
:return: ``True`` if this IP set is equivalent to the ``other`` IP set,
``False`` otherwise.
"""
try:
return self._cidrs == other._cidrs
except AttributeError:
return NotImplemented
def __ne__(self, other):
"""
:param other: an IP set
:return: ``False`` if this IP set is equivalent to the ``other`` IP set,
``True`` otherwise.
"""
try:
return self._cidrs != other._cidrs
except AttributeError:
return NotImplemented
def __lt__(self, other):
"""
:param other: an IP set
:return: ``True`` if this IP set is less than the ``other`` IP set,
``False`` otherwise.
"""
if not hasattr(other, '_cidrs'):
return NotImplemented
return self.size < other.size and self.issubset(other)
def issubset(self, other):
"""
:param other: an IP set.
:return: ``True`` if every IP address and subnet in this IP set
is found within ``other``.
"""
for cidr in self._cidrs:
if cidr not in other:
return False
return True
__le__ = issubset
def __gt__(self, other):
"""
:param other: an IP set.
:return: ``True`` if this IP set is greater than the ``other`` IP set,
``False`` otherwise.
"""
if not hasattr(other, '_cidrs'):
return NotImplemented
return self.size > other.size and self.issuperset(other)
def issuperset(self, other):
"""
:param other: an IP set.
:return: ``True`` if every IP address and subnet in other IP set
is found within this one.
"""
if not hasattr(other, '_cidrs'):
return NotImplemented
for cidr in other._cidrs:
if cidr not in self:
return False
return True
__ge__ = issuperset
def union(self, other):
"""
:param other: an IP set.
:return: the union of this IP set and another as a new IP set
(combines IP addresses and subnets from both sets).
"""
ip_set = self.copy()
ip_set.update(other)
return ip_set
__or__ = union
def intersection(self, other):
"""
:param other: an IP set.
:return: the intersection of this IP set and another as a new IP set.
(IP addresses and subnets common to both sets).
"""
result_cidrs = {}
own_nets = sorted(self._cidrs)
other_nets = sorted(other._cidrs)
own_idx = 0
other_idx = 0
own_len = len(own_nets)
other_len = len(other_nets)
while own_idx < own_len and other_idx < other_len:
own_cur = own_nets[own_idx]
other_cur = other_nets[other_idx]
if own_cur == other_cur:
result_cidrs[own_cur] = True
own_idx += 1
other_idx += 1
elif own_cur in other_cur:
result_cidrs[own_cur] = True
own_idx += 1
elif other_cur in own_cur:
result_cidrs[other_cur] = True
other_idx += 1
else:
# own_cur and other_cur have nothing in common
if own_cur < other_cur:
own_idx += 1
else:
other_idx += 1
# We ran out of networks in own_nets or other_nets. Either way, there
# can be no further result_cidrs.
result = IPSet()
result._cidrs = result_cidrs
return result
__and__ = intersection
def symmetric_difference(self, other):
"""
:param other: an IP set.
:return: the symmetric difference of this IP set and another as a new
IP set (all IP addresses and subnets that are in exactly one
of the sets).
"""
# In contrast to intersection() and difference(), we cannot construct
# the result_cidrs easily. Some cidrs may have to be merged, e.g. for
# IPSet(["10.0.0.0/32"]).symmetric_difference(IPSet(["10.0.0.1/32"])).
result_ranges = []
own_nets = sorted(self._cidrs)
other_nets = sorted(other._cidrs)
own_idx = 0
other_idx = 0
own_len = len(own_nets)
other_len = len(other_nets)
while own_idx < own_len and other_idx < other_len:
own_cur = own_nets[own_idx]
other_cur = other_nets[other_idx]
if own_cur == other_cur:
own_idx += 1
other_idx += 1
elif own_cur in other_cur:
own_idx = _subtract(other_cur, own_nets, own_idx, result_ranges)
other_idx += 1
elif other_cur in own_cur:
other_idx = _subtract(own_cur, other_nets, other_idx, result_ranges)
own_idx += 1
else:
# own_cur and other_cur have nothing in common
if own_cur < other_cur:
result_ranges.append((own_cur._module.version,
own_cur.first, own_cur.last))
own_idx += 1
else:
result_ranges.append((other_cur._module.version,
other_cur.first, other_cur.last))
other_idx += 1
# If the above loop terminated because it processed all cidrs of
# "other", then any remaining cidrs in self must be part of the result.
while own_idx < own_len:
own_cur = own_nets[own_idx]
result_ranges.append((own_cur._module.version,
own_cur.first, own_cur.last))
own_idx += 1
# If the above loop terminated because it processed all cidrs of
# self, then any remaining cidrs in "other" must be part of the result.
while other_idx < other_len:
other_cur = other_nets[other_idx]
result_ranges.append((other_cur._module.version,
other_cur.first, other_cur.last))
other_idx += 1
result = IPSet()
for start, stop in _iter_merged_ranges(result_ranges):
cidrs = iprange_to_cidrs(start, stop)
for cidr in cidrs:
result._cidrs[cidr] = True
return result
__xor__ = symmetric_difference
def difference(self, other):
"""
:param other: an IP set.
:return: the difference between this IP set and another as a new IP
set (all IP addresses and subnets that are in this IP set but
not found in the other.)
"""
result_ranges = []
result_cidrs = {}
own_nets = sorted(self._cidrs)
other_nets = sorted(other._cidrs)
own_idx = 0
other_idx = 0
own_len = len(own_nets)
other_len = len(other_nets)
while own_idx < own_len and other_idx < other_len:
own_cur = own_nets[own_idx]
other_cur = other_nets[other_idx]
if own_cur == other_cur:
own_idx += 1
other_idx += 1
elif own_cur in other_cur:
own_idx += 1
elif other_cur in own_cur:
other_idx = _subtract(own_cur, other_nets, other_idx,
result_ranges)
own_idx += 1
else:
# own_cur and other_cur have nothing in common
if own_cur < other_cur:
result_cidrs[own_cur] = True
own_idx += 1
else:
other_idx += 1
# If the above loop terminated because it processed all cidrs of
# "other", then any remaining cidrs in self must be part of the result.
while own_idx < own_len:
result_cidrs[own_nets[own_idx]] = True
own_idx += 1
for start, stop in _iter_merged_ranges(result_ranges):
for cidr in iprange_to_cidrs(start, stop):
result_cidrs[cidr] = True
result = IPSet()
result._cidrs = result_cidrs
return result
__sub__ = difference
def __len__(self):
"""
:return: the cardinality of this IP set (i.e. sum of individual IP \
addresses). Raises ``IndexError`` if size > maxint (a Python \
limitation). Use the .size property for subnets of any size.
"""
size = self.size
if size > _sys_maxint:
raise IndexError(
"range contains more than %d (sys.maxint) IP addresses!"
"Use the .size property instead." % _sys_maxint)
return size
@property
def size(self):
"""
The cardinality of this IP set (based on the number of individual IP
addresses including those implicitly defined in subnets).
"""
return sum([cidr.size for cidr in self._cidrs])
def __repr__(self):
""":return: Python statement to create an equivalent object"""
return 'IPSet(%r)' % [str(c) for c in sorted(self._cidrs)]
__str__ = __repr__
def iscontiguous(self):
"""
Returns True if the members of the set form a contiguous IP
address range (with no gaps), False otherwise.
:return: ``True`` if the ``IPSet`` object is contiguous.
"""
cidrs = self.iter_cidrs()
if len(cidrs) > 1:
previous = cidrs[0][0]
for cidr in cidrs:
if cidr[0] != previous:
return False
previous = cidr[-1] + 1
return True
def iprange(self):
"""
Generates an IPRange for this IPSet, if all its members
form a single contiguous sequence.
Raises ``ValueError`` if the set is not contiguous.
:return: An ``IPRange`` for all IPs in the IPSet.
"""
if self.iscontiguous():
cidrs = self.iter_cidrs()
if not cidrs:
return None
return IPRange(cidrs[0][0], cidrs[-1][-1])
else:
raise ValueError("IPSet is not contiguous")
def iter_ipranges(self):
"""Generate the merged IPRanges for this IPSet.
In contrast to self.iprange(), this will work even when the IPSet is
not contiguous. Adjacent IPRanges will be merged together, so you
get the minimal number of IPRanges.
"""
sorted_ranges = [(cidr._module.version, cidr.first, cidr.last) for
cidr in self.iter_cidrs()]
for start, stop in _iter_merged_ranges(sorted_ranges):
yield IPRange(start, stop)