add vendor for simpler distribution

This commit is contained in:
2023-09-07 11:40:50 +03:00
parent c801a0606f
commit c3ceb292d9
39 changed files with 243174 additions and 1 deletions

View File

@@ -0,0 +1,273 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""
Shared logic for various address types.
"""
import re as _re
from netaddr.compat import _range, _is_str
def bytes_to_bits():
"""
:return: A 256 element list containing 8-bit binary digit strings. The
list index value is equivalent to its bit string value.
"""
lookup = []
bits_per_byte = _range(7, -1, -1)
for num in range(256):
bits = 8 * [None]
for i in bits_per_byte:
bits[i] = '01'[num & 1]
num >>= 1
lookup.append(''.join(bits))
return lookup
#: A lookup table of 8-bit integer values to their binary digit bit strings.
BYTES_TO_BITS = bytes_to_bits()
def valid_words(words, word_size, num_words):
"""
:param words: A sequence of unsigned integer word values.
:param word_size: Width (in bits) of each unsigned integer word value.
:param num_words: Number of unsigned integer words expected.
:return: ``True`` if word sequence is valid for this address type,
``False`` otherwise.
"""
if not hasattr(words, '__iter__'):
return False
if len(words) != num_words:
return False
max_word = 2 ** word_size - 1
for i in words:
if not 0 <= i <= max_word:
return False
return True
def int_to_words(int_val, word_size, num_words):
"""
:param int_val: Unsigned integer to be divided into words of equal size.
:param word_size: Width (in bits) of each unsigned integer word value.
:param num_words: Number of unsigned integer words expected.
:return: A tuple contain unsigned integer word values split according
to provided arguments.
"""
max_int = 2 ** (num_words * word_size) - 1
if not 0 <= int_val <= max_int:
raise IndexError('integer out of bounds: %r!' % hex(int_val))
max_word = 2 ** word_size - 1
words = []
for _ in range(num_words):
word = int_val & max_word
words.append(int(word))
int_val >>= word_size
return tuple(reversed(words))
def words_to_int(words, word_size, num_words):
"""
:param words: A sequence of unsigned integer word values.
:param word_size: Width (in bits) of each unsigned integer word value.
:param num_words: Number of unsigned integer words expected.
:return: An unsigned integer that is equivalent to value represented
by word sequence.
"""
if not valid_words(words, word_size, num_words):
raise ValueError('invalid integer word sequence: %r!' % (words,))
int_val = 0
for i, num in enumerate(reversed(words)):
word = num
word = word << word_size * i
int_val = int_val | word
return int_val
def valid_bits(bits, width, word_sep=''):
"""
:param bits: A network address in a delimited binary string format.
:param width: Maximum width (in bits) of a network address (excluding
delimiters).
:param word_sep: (optional) character or string used to delimit word
groups (default: '', no separator).
:return: ``True`` if network address is valid, ``False`` otherwise.
"""
if not _is_str(bits):
return False
if word_sep != '':
bits = bits.replace(word_sep, '')
if len(bits) != width:
return False
max_int = 2 ** width - 1
try:
if 0 <= int(bits, 2) <= max_int:
return True
except ValueError:
pass
return False
def bits_to_int(bits, width, word_sep=''):
"""
:param bits: A network address in a delimited binary string format.
:param width: Maximum width (in bits) of a network address (excluding
delimiters).
:param word_sep: (optional) character or string used to delimit word
groups (default: '', no separator).
:return: An unsigned integer that is equivalent to value represented
by network address in readable binary form.
"""
if not valid_bits(bits, width, word_sep):
raise ValueError('invalid readable binary string: %r!' % (bits,))
if word_sep != '':
bits = bits.replace(word_sep, '')
return int(bits, 2)
def int_to_bits(int_val, word_size, num_words, word_sep=''):
"""
:param int_val: An unsigned integer.
:param word_size: Width (in bits) of each unsigned integer word value.
:param num_words: Number of unsigned integer words expected.
:param word_sep: (optional) character or string used to delimit word
groups (default: '', no separator).
:return: A network address in a delimited binary string format that is
equivalent in value to unsigned integer.
"""
bit_words = []
for word in int_to_words(int_val, word_size, num_words):
bits = []
while word:
bits.append(BYTES_TO_BITS[word & 255])
word >>= 8
bits.reverse()
bit_str = ''.join(bits) or '0' * word_size
bits = ('0' * word_size + bit_str)[-word_size:]
bit_words.append(bits)
if word_sep != '':
# Check custom separator.
if not _is_str(word_sep):
raise ValueError('word separator is not a string: %r!' % (word_sep,))
return word_sep.join(bit_words)
def valid_bin(bin_val, width):
"""
:param bin_val: A network address in Python's binary representation format
('0bxxx').
:param width: Maximum width (in bits) of a network address (excluding
delimiters).
:return: ``True`` if network address is valid, ``False`` otherwise.
"""
if not _is_str(bin_val):
return False
if not bin_val.startswith('0b'):
return False
bin_val = bin_val.replace('0b', '')
if len(bin_val) > width:
return False
max_int = 2 ** width - 1
try:
if 0 <= int(bin_val, 2) <= max_int:
return True
except ValueError:
pass
return False
def int_to_bin(int_val, width):
"""
:param int_val: An unsigned integer.
:param width: Maximum allowed width (in bits) of a unsigned integer.
:return: Equivalent string value in Python's binary representation format
('0bxxx').
"""
bin_tokens = []
try:
# Python 2.6.x and upwards.
bin_val = bin(int_val)
except NameError:
# Python 2.4.x and 2.5.x
i = int_val
while i > 0:
word = i & 0xff
bin_tokens.append(BYTES_TO_BITS[word])
i >>= 8
bin_tokens.reverse()
bin_val = '0b' + _re.sub(r'^[0]+([01]+)$', r'\1', ''.join(bin_tokens))
if len(bin_val[2:]) > width:
raise IndexError('binary string out of bounds: %s!' % (bin_val,))
return bin_val
def bin_to_int(bin_val, width):
"""
:param bin_val: A string containing an unsigned integer in Python's binary
representation format ('0bxxx').
:param width: Maximum allowed width (in bits) of a unsigned integer.
:return: An unsigned integer that is equivalent to value represented
by Python binary string format.
"""
if not valid_bin(bin_val, width):
raise ValueError('not a valid Python binary string: %r!' % (bin_val,))
return int(bin_val.replace('0b', ''), 2)

View File

@@ -0,0 +1,296 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""
IEEE 48-bit EUI (MAC address) logic.
Supports numerous MAC string formats including Cisco's triple hextet as well
as bare MACs containing no delimiters.
"""
import struct as _struct
import re as _re
# Check whether we need to use fallback code or not.
try:
from socket import AF_LINK
except ImportError:
AF_LINK = 48
from netaddr.core import AddrFormatError
from netaddr.compat import _is_str
from netaddr.strategy import (
valid_words as _valid_words, int_to_words as _int_to_words,
words_to_int as _words_to_int, valid_bits as _valid_bits,
bits_to_int as _bits_to_int, int_to_bits as _int_to_bits,
valid_bin as _valid_bin, int_to_bin as _int_to_bin,
bin_to_int as _bin_to_int)
#: The width (in bits) of this address type.
width = 48
#: The AF_* constant value of this address type.
family = AF_LINK
#: A friendly string name address type.
family_name = 'MAC'
#: The version of this address type.
version = 48
#: The maximum integer value that can be represented by this address type.
max_int = 2 ** width - 1
#-----------------------------------------------------------------------------
# Dialect classes.
#-----------------------------------------------------------------------------
class mac_eui48(object):
"""A standard IEEE EUI-48 dialect class."""
#: The individual word size (in bits) of this address type.
word_size = 8
#: The number of words in this address type.
num_words = width // word_size
#: The maximum integer value for an individual word in this address type.
max_word = 2 ** word_size - 1
#: The separator character used between each word.
word_sep = '-'
#: The format string to be used when converting words to string values.
word_fmt = '%.2X'
#: The number base to be used when interpreting word values as integers.
word_base = 16
class mac_unix(mac_eui48):
"""A UNIX-style MAC address dialect class."""
word_size = 8
num_words = width // word_size
word_sep = ':'
word_fmt = '%x'
word_base = 16
class mac_unix_expanded(mac_unix):
"""A UNIX-style MAC address dialect class with leading zeroes."""
word_fmt = '%.2x'
class mac_cisco(mac_eui48):
"""A Cisco 'triple hextet' MAC address dialect class."""
word_size = 16
num_words = width // word_size
word_sep = '.'
word_fmt = '%.4x'
word_base = 16
class mac_bare(mac_eui48):
"""A bare (no delimiters) MAC address dialect class."""
word_size = 48
num_words = width // word_size
word_sep = ''
word_fmt = '%.12X'
word_base = 16
class mac_pgsql(mac_eui48):
"""A PostgreSQL style (2 x 24-bit words) MAC address dialect class."""
word_size = 24
num_words = width // word_size
word_sep = ':'
word_fmt = '%.6x'
word_base = 16
#: The default dialect to be used when not specified by the user.
DEFAULT_DIALECT = mac_eui48
#-----------------------------------------------------------------------------
#: Regular expressions to match all supported MAC address formats.
RE_MAC_FORMATS = (
# 2 bytes x 6 (UNIX, Windows, EUI-48)
'^' + ':'.join(['([0-9A-F]{1,2})'] * 6) + '$',
'^' + '-'.join(['([0-9A-F]{1,2})'] * 6) + '$',
# 4 bytes x 3 (Cisco)
'^' + ':'.join(['([0-9A-F]{1,4})'] * 3) + '$',
'^' + '-'.join(['([0-9A-F]{1,4})'] * 3) + '$',
'^' + r'\.'.join(['([0-9A-F]{1,4})'] * 3) + '$',
# 6 bytes x 2 (PostgreSQL)
'^' + '-'.join(['([0-9A-F]{5,6})'] * 2) + '$',
'^' + ':'.join(['([0-9A-F]{5,6})'] * 2) + '$',
# 12 bytes (bare, no delimiters)
'^(' + ''.join(['[0-9A-F]'] * 12) + ')$',
'^(' + ''.join(['[0-9A-F]'] * 11) + ')$',
)
# For efficiency, each string regexp converted in place to its compiled
# counterpart.
RE_MAC_FORMATS = [_re.compile(_, _re.IGNORECASE) for _ in RE_MAC_FORMATS]
def valid_str(addr):
"""
:param addr: An IEEE EUI-48 (MAC) address in string form.
:return: ``True`` if MAC address string is valid, ``False`` otherwise.
"""
for regexp in RE_MAC_FORMATS:
try:
match_result = regexp.findall(addr)
if len(match_result) != 0:
return True
except TypeError:
pass
return False
def str_to_int(addr):
"""
:param addr: An IEEE EUI-48 (MAC) address in string form.
:return: An unsigned integer that is equivalent to value represented
by EUI-48/MAC string address formatted according to the dialect
settings.
"""
words = []
if _is_str(addr):
found_match = False
for regexp in RE_MAC_FORMATS:
match_result = regexp.findall(addr)
if len(match_result) != 0:
found_match = True
if isinstance(match_result[0], tuple):
words = match_result[0]
else:
words = (match_result[0],)
break
if not found_match:
raise AddrFormatError('%r is not a supported MAC format!' % (addr,))
else:
raise TypeError('%r is not str() or unicode()!' % (addr,))
int_val = None
if len(words) == 6:
# 2 bytes x 6 (UNIX, Windows, EUI-48)
int_val = int(''.join(['%.2x' % int(w, 16) for w in words]), 16)
elif len(words) == 3:
# 4 bytes x 3 (Cisco)
int_val = int(''.join(['%.4x' % int(w, 16) for w in words]), 16)
elif len(words) == 2:
# 6 bytes x 2 (PostgreSQL)
int_val = int(''.join(['%.6x' % int(w, 16) for w in words]), 16)
elif len(words) == 1:
# 12 bytes (bare, no delimiters)
int_val = int('%012x' % int(words[0], 16), 16)
else:
raise AddrFormatError('unexpected word count in MAC address %r!' % (addr,))
return int_val
def int_to_str(int_val, dialect=None):
"""
:param int_val: An unsigned integer.
:param dialect: (optional) a Python class defining formatting options.
:return: An IEEE EUI-48 (MAC) address string that is equivalent to
unsigned integer formatted according to the dialect settings.
"""
if dialect is None:
dialect = mac_eui48
words = int_to_words(int_val, dialect)
tokens = [dialect.word_fmt % i for i in words]
addr = dialect.word_sep.join(tokens)
return addr
def int_to_packed(int_val):
"""
:param int_val: the integer to be packed.
:return: a packed string that is equivalent to value represented by an
unsigned integer.
"""
return _struct.pack(">HI", int_val >> 32, int_val & 0xffffffff)
def packed_to_int(packed_int):
"""
:param packed_int: a packed string containing an unsigned integer.
It is assumed that string is packed in network byte order.
:return: An unsigned integer equivalent to value of network address
represented by packed binary string.
"""
words = list(_struct.unpack('>6B', packed_int))
int_val = 0
for i, num in enumerate(reversed(words)):
word = num
word = word << 8 * i
int_val = int_val | word
return int_val
def valid_words(words, dialect=None):
if dialect is None:
dialect = DEFAULT_DIALECT
return _valid_words(words, dialect.word_size, dialect.num_words)
def int_to_words(int_val, dialect=None):
if dialect is None:
dialect = DEFAULT_DIALECT
return _int_to_words(int_val, dialect.word_size, dialect.num_words)
def words_to_int(words, dialect=None):
if dialect is None:
dialect = DEFAULT_DIALECT
return _words_to_int(words, dialect.word_size, dialect.num_words)
def valid_bits(bits, dialect=None):
if dialect is None:
dialect = DEFAULT_DIALECT
return _valid_bits(bits, width, dialect.word_sep)
def bits_to_int(bits, dialect=None):
if dialect is None:
dialect = DEFAULT_DIALECT
return _bits_to_int(bits, width, dialect.word_sep)
def int_to_bits(int_val, dialect=None):
if dialect is None:
dialect = DEFAULT_DIALECT
return _int_to_bits(
int_val, dialect.word_size, dialect.num_words, dialect.word_sep)
def valid_bin(bin_val, dialect=None):
if dialect is None:
dialect = DEFAULT_DIALECT
return _valid_bin(bin_val, width)
def int_to_bin(int_val):
return _int_to_bin(int_val, width)
def bin_to_int(bin_val):
return _bin_to_int(bin_val, width)

View File

@@ -0,0 +1,273 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""
IEEE 64-bit EUI (Extended Unique Indentifier) logic.
"""
import struct as _struct
import re as _re
from netaddr.core import AddrFormatError
from netaddr.strategy import (
valid_words as _valid_words, int_to_words as _int_to_words,
words_to_int as _words_to_int, valid_bits as _valid_bits,
bits_to_int as _bits_to_int, int_to_bits as _int_to_bits,
valid_bin as _valid_bin, int_to_bin as _int_to_bin,
bin_to_int as _bin_to_int)
# This is a fake constant that doesn't really exist. Here for completeness.
AF_EUI64 = 64
#: The width (in bits) of this address type.
width = 64
#: The AF_* constant value of this address type.
family = AF_EUI64
#: A friendly string name address type.
family_name = 'EUI-64'
#: The version of this address type.
version = 64
#: The maximum integer value that can be represented by this address type.
max_int = 2 ** width - 1
#-----------------------------------------------------------------------------
# Dialect classes.
#-----------------------------------------------------------------------------
class eui64_base(object):
"""A standard IEEE EUI-64 dialect class."""
#: The individual word size (in bits) of this address type.
word_size = 8
#: The number of words in this address type.
num_words = width // word_size
#: The maximum integer value for an individual word in this address type.
max_word = 2 ** word_size - 1
#: The separator character used between each word.
word_sep = '-'
#: The format string to be used when converting words to string values.
word_fmt = '%.2X'
#: The number base to be used when interpreting word values as integers.
word_base = 16
class eui64_unix(eui64_base):
"""A UNIX-style MAC address dialect class."""
word_size = 8
num_words = width // word_size
word_sep = ':'
word_fmt = '%x'
word_base = 16
class eui64_unix_expanded(eui64_unix):
"""A UNIX-style MAC address dialect class with leading zeroes."""
word_fmt = '%.2x'
class eui64_cisco(eui64_base):
"""A Cisco 'triple hextet' MAC address dialect class."""
word_size = 16
num_words = width // word_size
word_sep = '.'
word_fmt = '%.4x'
word_base = 16
class eui64_bare(eui64_base):
"""A bare (no delimiters) MAC address dialect class."""
word_size = 64
num_words = width // word_size
word_sep = ''
word_fmt = '%.16X'
word_base = 16
#: The default dialect to be used when not specified by the user.
DEFAULT_EUI64_DIALECT = eui64_base
#-----------------------------------------------------------------------------
#: Regular expressions to match all supported MAC address formats.
RE_EUI64_FORMATS = (
# 2 bytes x 8 (UNIX, Windows, EUI-64)
'^' + ':'.join(['([0-9A-F]{1,2})'] * 8) + '$',
'^' + '-'.join(['([0-9A-F]{1,2})'] * 8) + '$',
# 4 bytes x 4 (Cisco like)
'^' + ':'.join(['([0-9A-F]{1,4})'] * 4) + '$',
'^' + '-'.join(['([0-9A-F]{1,4})'] * 4) + '$',
'^' + r'\.'.join(['([0-9A-F]{1,4})'] * 4) + '$',
# 16 bytes (bare, no delimiters)
'^(' + ''.join(['[0-9A-F]'] * 16) + ')$',
)
# For efficiency, each string regexp converted in place to its compiled
# counterpart.
RE_EUI64_FORMATS = [_re.compile(_, _re.IGNORECASE) for _ in RE_EUI64_FORMATS]
def _get_match_result(address, formats):
for regexp in formats:
match = regexp.findall(address)
if match:
return match[0]
def valid_str(addr):
"""
:param addr: An IEEE EUI-64 indentifier in string form.
:return: ``True`` if EUI-64 indentifier is valid, ``False`` otherwise.
"""
try:
if _get_match_result(addr, RE_EUI64_FORMATS):
return True
except TypeError:
pass
return False
def str_to_int(addr):
"""
:param addr: An IEEE EUI-64 indentifier in string form.
:return: An unsigned integer that is equivalent to value represented
by EUI-64 string address formatted according to the dialect
"""
words = []
try:
words = _get_match_result(addr, RE_EUI64_FORMATS)
if not words:
raise TypeError
except TypeError:
raise AddrFormatError('invalid IEEE EUI-64 identifier: %r!' % (addr,))
if isinstance(words, tuple):
pass
else:
words = (words,)
if len(words) == 8:
# 2 bytes x 8 (UNIX, Windows, EUI-48)
int_val = int(''.join(['%.2x' % int(w, 16) for w in words]), 16)
elif len(words) == 4:
# 4 bytes x 4 (Cisco like)
int_val = int(''.join(['%.4x' % int(w, 16) for w in words]), 16)
elif len(words) == 1:
# 16 bytes (bare, no delimiters)
int_val = int('%016x' % int(words[0], 16), 16)
else:
raise AddrFormatError(
'bad word count for EUI-64 identifier: %r!' % addr)
return int_val
def int_to_str(int_val, dialect=None):
"""
:param int_val: An unsigned integer.
:param dialect: (optional) a Python class defining formatting options
:return: An IEEE EUI-64 identifier that is equivalent to unsigned integer.
"""
if dialect is None:
dialect = eui64_base
words = int_to_words(int_val, dialect)
tokens = [dialect.word_fmt % i for i in words]
addr = dialect.word_sep.join(tokens)
return addr
def int_to_packed(int_val):
"""
:param int_val: the integer to be packed.
:return: a packed string that is equivalent to value represented by an
unsigned integer.
"""
words = int_to_words(int_val)
return _struct.pack('>8B', *words)
def packed_to_int(packed_int):
"""
:param packed_int: a packed string containing an unsigned integer.
It is assumed that string is packed in network byte order.
:return: An unsigned integer equivalent to value of network address
represented by packed binary string.
"""
words = list(_struct.unpack('>8B', packed_int))
int_val = 0
for i, num in enumerate(reversed(words)):
word = num
word = word << 8 * i
int_val = int_val | word
return int_val
def valid_words(words, dialect=None):
if dialect is None:
dialect = DEFAULT_EUI64_DIALECT
return _valid_words(words, dialect.word_size, dialect.num_words)
def int_to_words(int_val, dialect=None):
if dialect is None:
dialect = DEFAULT_EUI64_DIALECT
return _int_to_words(int_val, dialect.word_size, dialect.num_words)
def words_to_int(words, dialect=None):
if dialect is None:
dialect = DEFAULT_EUI64_DIALECT
return _words_to_int(words, dialect.word_size, dialect.num_words)
def valid_bits(bits, dialect=None):
if dialect is None:
dialect = DEFAULT_EUI64_DIALECT
return _valid_bits(bits, width, dialect.word_sep)
def bits_to_int(bits, dialect=None):
if dialect is None:
dialect = DEFAULT_EUI64_DIALECT
return _bits_to_int(bits, width, dialect.word_sep)
def int_to_bits(int_val, dialect=None):
if dialect is None:
dialect = DEFAULT_EUI64_DIALECT
return _int_to_bits(
int_val, dialect.word_size, dialect.num_words, dialect.word_sep)
def valid_bin(bin_val, dialect=None):
if dialect is None:
dialect = DEFAULT_EUI64_DIALECT
return _valid_bin(bin_val, width)
def int_to_bin(int_val):
return _int_to_bin(int_val, width)
def bin_to_int(bin_val):
return _bin_to_int(bin_val, width)

View File

@@ -0,0 +1,279 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""IPv4 address logic."""
import sys as _sys
import struct as _struct
from socket import inet_aton as _inet_aton
# Check whether we need to use fallback code or not.
if _sys.platform in ('win32', 'cygwin'):
# inet_pton() not available on Windows. inet_pton() under cygwin
# behaves exactly like inet_aton() and is therefore highly unreliable.
from netaddr.fbsocket import inet_pton as _inet_pton, AF_INET
else:
# All other cases, use all functions from the socket module.
from socket import inet_pton as _inet_pton, AF_INET
from netaddr.core import AddrFormatError, ZEROFILL, INET_PTON
from netaddr.strategy import (
valid_words as _valid_words, valid_bits as _valid_bits,
bits_to_int as _bits_to_int, int_to_bits as _int_to_bits,
valid_bin as _valid_bin, int_to_bin as _int_to_bin,
bin_to_int as _bin_to_int)
from netaddr.compat import _str_type
#: The width (in bits) of this address type.
width = 32
#: The individual word size (in bits) of this address type.
word_size = 8
#: The format string to be used when converting words to string values.
word_fmt = '%d'
#: The separator character used between each word.
word_sep = '.'
#: The AF_* constant value of this address type.
family = AF_INET
#: A friendly string name address type.
family_name = 'IPv4'
#: The version of this address type.
version = 4
#: The number base to be used when interpreting word values as integers.
word_base = 10
#: The maximum integer value that can be represented by this address type.
max_int = 2 ** width - 1
#: The number of words in this address type.
num_words = width // word_size
#: The maximum integer value for an individual word in this address type.
max_word = 2 ** word_size - 1
#: A dictionary mapping IPv4 CIDR prefixes to the equivalent netmasks.
prefix_to_netmask = dict(
[(i, max_int ^ (2 ** (width - i) - 1)) for i in range(0, width + 1)])
#: A dictionary mapping IPv4 netmasks to their equivalent CIDR prefixes.
netmask_to_prefix = dict(
[(max_int ^ (2 ** (width - i) - 1), i) for i in range(0, width + 1)])
#: A dictionary mapping IPv4 CIDR prefixes to the equivalent hostmasks.
prefix_to_hostmask = dict(
[(i, (2 ** (width - i) - 1)) for i in range(0, width + 1)])
#: A dictionary mapping IPv4 hostmasks to their equivalent CIDR prefixes.
hostmask_to_prefix = dict(
[((2 ** (width - i) - 1), i) for i in range(0, width + 1)])
def valid_str(addr, flags=0):
"""
:param addr: An IPv4 address in presentation (string) format.
:param flags: decides which rules are applied to the interpretation of the
addr value. Supported constants are INET_PTON and ZEROFILL. See the
netaddr.core docs for details.
:return: ``True`` if IPv4 address is valid, ``False`` otherwise.
"""
if addr == '':
raise AddrFormatError('Empty strings are not supported!')
validity = True
if flags & ZEROFILL:
addr = '.'.join(['%d' % int(i) for i in addr.split('.')])
try:
if flags & INET_PTON:
_inet_pton(AF_INET, addr)
else:
_inet_aton(addr)
except Exception:
validity = False
return validity
def str_to_int(addr, flags=0):
"""
:param addr: An IPv4 dotted decimal address in string form.
:param flags: decides which rules are applied to the interpretation of the
addr value. Supported constants are INET_PTON and ZEROFILL. See the
netaddr.core docs for details.
:return: The equivalent unsigned integer for a given IPv4 address.
"""
if flags & ZEROFILL:
addr = '.'.join(['%d' % int(i) for i in addr.split('.')])
try:
if flags & INET_PTON:
return _struct.unpack('>I', _inet_pton(AF_INET, addr))[0]
else:
return _struct.unpack('>I', _inet_aton(addr))[0]
except Exception:
raise AddrFormatError('%r is not a valid IPv4 address string!' % (addr,))
def int_to_str(int_val, dialect=None):
"""
:param int_val: An unsigned integer.
:param dialect: (unused) Any value passed in is ignored.
:return: The IPv4 presentation (string) format address equivalent to the
unsigned integer provided.
"""
if 0 <= int_val <= max_int:
return '%d.%d.%d.%d' % (
int_val >> 24,
(int_val >> 16) & 0xff,
(int_val >> 8) & 0xff,
int_val & 0xff)
else:
raise ValueError('%r is not a valid 32-bit unsigned integer!' % (int_val,))
def int_to_arpa(int_val):
"""
:param int_val: An unsigned integer.
:return: The reverse DNS lookup for an IPv4 address in network byte
order integer form.
"""
words = ["%d" % i for i in int_to_words(int_val)]
words.reverse()
words.extend(['in-addr', 'arpa', ''])
return '.'.join(words)
def int_to_packed(int_val):
"""
:param int_val: the integer to be packed.
:return: a packed string that is equivalent to value represented by an
unsigned integer.
"""
return _struct.pack('>I', int_val)
def packed_to_int(packed_int):
"""
:param packed_int: a packed string containing an unsigned integer.
It is assumed that string is packed in network byte order.
:return: An unsigned integer equivalent to value of network address
represented by packed binary string.
"""
return _struct.unpack('>I', packed_int)[0]
def valid_words(words):
return _valid_words(words, word_size, num_words)
def int_to_words(int_val):
"""
:param int_val: An unsigned integer.
:return: An integer word (octet) sequence that is equivalent to value
represented by an unsigned integer.
"""
if not 0 <= int_val <= max_int:
raise ValueError('%r is not a valid integer value supported by'
'this address type!' % (int_val,))
return ( int_val >> 24,
(int_val >> 16) & 0xff,
(int_val >> 8) & 0xff,
int_val & 0xff)
def words_to_int(words):
"""
:param words: A list or tuple containing integer octets.
:return: An unsigned integer that is equivalent to value represented
by word (octet) sequence.
"""
if not valid_words(words):
raise ValueError('%r is not a valid octet list for an IPv4 address!' % (words,))
return _struct.unpack('>I', _struct.pack('4B', *words))[0]
def valid_bits(bits):
return _valid_bits(bits, width, word_sep)
def bits_to_int(bits):
return _bits_to_int(bits, width, word_sep)
def int_to_bits(int_val, word_sep=None):
if word_sep is None:
word_sep = globals()['word_sep']
return _int_to_bits(int_val, word_size, num_words, word_sep)
def valid_bin(bin_val):
return _valid_bin(bin_val, width)
def int_to_bin(int_val):
return _int_to_bin(int_val, width)
def bin_to_int(bin_val):
return _bin_to_int(bin_val, width)
def expand_partial_address(addr):
"""
Expands a partial IPv4 address into a full 4-octet version.
:param addr: an partial or abbreviated IPv4 address
:return: an expanded IP address in presentation format (x.x.x.x)
"""
tokens = []
error = AddrFormatError('invalid partial IPv4 address: %r!' % addr)
if isinstance(addr, _str_type):
if ':' in addr:
# Ignore IPv6 ...
raise error
try:
if '.' in addr:
tokens = ['%d' % int(o) for o in addr.split('.')]
else:
tokens = ['%d' % int(addr)]
except ValueError:
raise error
if 1 <= len(tokens) <= 4:
for i in range(4 - len(tokens)):
tokens.append('0')
else:
raise error
if not tokens:
raise error
return '%s.%s.%s.%s' % tuple(tokens)

View File

@@ -0,0 +1,259 @@
#-----------------------------------------------------------------------------
# Copyright (c) 2008 by David P. D. Moss. All rights reserved.
#
# Released under the BSD license. See the LICENSE file for details.
#-----------------------------------------------------------------------------
"""
IPv6 address logic.
"""
import struct as _struct
OPT_IMPORTS = False
# Check whether we need to use fallback code or not.
try:
import socket as _socket
# These might all generate exceptions on different platforms.
if not _socket.has_ipv6:
raise Exception('IPv6 disabled')
_socket.inet_pton
_socket.AF_INET6
from _socket import (inet_pton as _inet_pton, inet_ntop as _inet_ntop,
AF_INET6)
OPT_IMPORTS = True
except Exception:
from netaddr.fbsocket import (inet_pton as _inet_pton, inet_ntop as _inet_ntop,
AF_INET6)
from netaddr.core import AddrFormatError
from netaddr.strategy import (
valid_words as _valid_words, int_to_words as _int_to_words,
words_to_int as _words_to_int, valid_bits as _valid_bits,
bits_to_int as _bits_to_int, int_to_bits as _int_to_bits,
valid_bin as _valid_bin, int_to_bin as _int_to_bin,
bin_to_int as _bin_to_int)
#: The width (in bits) of this address type.
width = 128
#: The individual word size (in bits) of this address type.
word_size = 16
#: The separator character used between each word.
word_sep = ':'
#: The AF_* constant value of this address type.
family = AF_INET6
#: A friendly string name address type.
family_name = 'IPv6'
#: The version of this address type.
version = 6
#: The number base to be used when interpreting word values as integers.
word_base = 16
#: The maximum integer value that can be represented by this address type.
max_int = 2 ** width - 1
#: The number of words in this address type.
num_words = width // word_size
#: The maximum integer value for an individual word in this address type.
max_word = 2 ** word_size - 1
#: A dictionary mapping IPv6 CIDR prefixes to the equivalent netmasks.
prefix_to_netmask = dict(
[(i, max_int ^ (2 ** (width - i) - 1)) for i in range(0, width+1)])
#: A dictionary mapping IPv6 netmasks to their equivalent CIDR prefixes.
netmask_to_prefix = dict(
[(max_int ^ (2 ** (width - i) - 1), i) for i in range(0, width+1)])
#: A dictionary mapping IPv6 CIDR prefixes to the equivalent hostmasks.
prefix_to_hostmask = dict(
[(i, (2 ** (width - i) - 1)) for i in range(0, width+1)])
#: A dictionary mapping IPv6 hostmasks to their equivalent CIDR prefixes.
hostmask_to_prefix = dict(
[((2 ** (width - i) - 1), i) for i in range(0, width+1)])
#-----------------------------------------------------------------------------
# Dialect classes.
#-----------------------------------------------------------------------------
class ipv6_compact(object):
"""An IPv6 dialect class - compact form."""
#: The format string used to converting words into string values.
word_fmt = '%x'
#: Boolean flag indicating if IPv6 compaction algorithm should be used.
compact = True
class ipv6_full(ipv6_compact):
"""An IPv6 dialect class - 'all zeroes' form."""
#: Boolean flag indicating if IPv6 compaction algorithm should be used.
compact = False
class ipv6_verbose(ipv6_compact):
"""An IPv6 dialect class - extra wide 'all zeroes' form."""
#: The format string used to converting words into string values.
word_fmt = '%.4x'
#: Boolean flag indicating if IPv6 compaction algorithm should be used.
compact = False
def valid_str(addr, flags=0):
"""
:param addr: An IPv6 address in presentation (string) format.
:param flags: decides which rules are applied to the interpretation of the
addr value. Future use - currently has no effect.
:return: ``True`` if IPv6 address is valid, ``False`` otherwise.
"""
if addr == '':
raise AddrFormatError('Empty strings are not supported!')
try:
_inet_pton(AF_INET6, addr)
except:
return False
return True
def str_to_int(addr, flags=0):
"""
:param addr: An IPv6 address in string form.
:param flags: decides which rules are applied to the interpretation of the
addr value. Future use - currently has no effect.
:return: The equivalent unsigned integer for a given IPv6 address.
"""
try:
packed_int = _inet_pton(AF_INET6, addr)
return packed_to_int(packed_int)
except Exception:
raise AddrFormatError('%r is not a valid IPv6 address string!' % (addr,))
def int_to_str(int_val, dialect=None):
"""
:param int_val: An unsigned integer.
:param dialect: (optional) a Python class defining formatting options.
:return: The IPv6 presentation (string) format address equivalent to the
unsigned integer provided.
"""
if dialect is None:
dialect = ipv6_compact
addr = None
try:
packed_int = int_to_packed(int_val)
if dialect.compact:
# Default return value.
addr = _inet_ntop(AF_INET6, packed_int)
else:
# Custom return value.
words = list(_struct.unpack('>8H', packed_int))
tokens = [dialect.word_fmt % word for word in words]
addr = word_sep.join(tokens)
except Exception:
raise ValueError('%r is not a valid 128-bit unsigned integer!' % (int_val,))
return addr
def int_to_arpa(int_val):
"""
:param int_val: An unsigned integer.
:return: The reverse DNS lookup for an IPv6 address in network byte
order integer form.
"""
addr = int_to_str(int_val, ipv6_verbose)
tokens = list(addr.replace(':', ''))
tokens.reverse()
# We won't support ip6.int here - see RFC 3152 for details.
tokens = tokens + ['ip6', 'arpa', '']
return '.'.join(tokens)
def int_to_packed(int_val):
"""
:param int_val: the integer to be packed.
:return: a packed string that is equivalent to value represented by an
unsigned integer.
"""
words = int_to_words(int_val, 4, 32)
return _struct.pack('>4I', *words)
def packed_to_int(packed_int):
"""
:param packed_int: a packed string containing an unsigned integer.
It is assumed that string is packed in network byte order.
:return: An unsigned integer equivalent to value of network address
represented by packed binary string.
"""
words = list(_struct.unpack('>4I', packed_int))
int_val = 0
for i, num in enumerate(reversed(words)):
word = num
word = word << 32 * i
int_val = int_val | word
return int_val
def valid_words(words):
return _valid_words(words, word_size, num_words)
def int_to_words(int_val, num_words=None, word_size=None):
if num_words is None:
num_words = globals()['num_words']
if word_size is None:
word_size = globals()['word_size']
return _int_to_words(int_val, word_size, num_words)
def words_to_int(words):
return _words_to_int(words, word_size, num_words)
def valid_bits(bits):
return _valid_bits(bits, width, word_sep)
def bits_to_int(bits):
return _bits_to_int(bits, width, word_sep)
def int_to_bits(int_val, word_sep=None):
if word_sep is None:
word_sep = globals()['word_sep']
return _int_to_bits(int_val, word_size, num_words, word_sep)
def valid_bin(bin_val):
return _valid_bin(bin_val, width)
def int_to_bin(int_val):
return _int_to_bin(int_val, width)
def bin_to_int(bin_val):
return _bin_to_int(bin_val, width)