mirror of
https://github.com/fralx/LimeReport.git
synced 2025-01-11 17:18:10 +03:00
288 lines
10 KiB
C
288 lines
10 KiB
C
|
/**
|
||
|
|
||
|
This is a simple Reed-Solomon encoder
|
||
|
(C) Cliff Hones 2004
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
|
||
|
1. Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
2. Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
3. Neither the name of the project nor the names of its contributors
|
||
|
may be used to endorse or promote products derived from this software
|
||
|
without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
SUCH DAMAGE.
|
||
|
*/
|
||
|
/* vim: set ts=4 sw=4 et : */
|
||
|
|
||
|
// It is not written with high efficiency in mind, so is probably
|
||
|
// not suitable for real-time encoding. The aim was to keep it
|
||
|
// simple, general and clear.
|
||
|
//
|
||
|
// <Some notes on the theory and implementation need to be added here>
|
||
|
|
||
|
// Usage:
|
||
|
// First call rs_init_gf(&rs, prime_poly) to set up the Galois Field parameters.
|
||
|
// Then call rs_init_code(&rs, nsym, index) to set the encoding size
|
||
|
// Then call rs_encode(&rs, datalen, data, out) to encode the data.
|
||
|
//
|
||
|
// These can be called repeatedly as required - but note that
|
||
|
// rs_init_code must be called following any rs_init_gf call.
|
||
|
//
|
||
|
// If the parameters are fixed, some of the statics below can be
|
||
|
// replaced with constants in the obvious way, and additionally
|
||
|
// malloc/free can be avoided by using static arrays of a suitable
|
||
|
// size.
|
||
|
// Note: use of statics has been done for (up to) 8-bit tables.
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#include <malloc.h>
|
||
|
#endif
|
||
|
#include "common.h"
|
||
|
#include "reedsol.h"
|
||
|
#include "reedsol_logs.h"
|
||
|
|
||
|
// rs_init_gf(&rs, prime_poly) initialises the parameters for the Galois Field.
|
||
|
// The symbol size is determined from the highest bit set in poly
|
||
|
// This implementation will support sizes up to 8 bits (see rs_uint_init_gf()
|
||
|
// for sizes > 8 bits and <= 30 bits) - bit sizes of 8 or 4 are typical
|
||
|
//
|
||
|
// The poly is the bit pattern representing the GF characteristic
|
||
|
// polynomial. e.g. for ECC200 (8-bit symbols) the polynomial is
|
||
|
// a**8 + a**5 + a**3 + a**2 + 1, which translates to 0x12d.
|
||
|
|
||
|
INTERNAL void rs_init_gf(rs_t *rs, const unsigned int prime_poly) {
|
||
|
struct item {
|
||
|
const unsigned char *logt;
|
||
|
const unsigned char *alog;
|
||
|
};
|
||
|
/* To add a new prime poly of degree <= 8 add its details to this table and to the table in `test_generate()`
|
||
|
* in "backend/tests/test_reedsol.c" and regenerate the log tables by running "./test_reedsol -f generate -g".
|
||
|
* Paste the result in "reedsol_logs.h" */
|
||
|
static const struct item data[] = {
|
||
|
{ logt_0x13, alog_0x13 }, /* 0 000- */
|
||
|
{ logt_0x25, alog_0x25 }, /* 0 001- */
|
||
|
{ logt_0x43, alog_0x43 }, /* 0 010- */
|
||
|
{ NULL, NULL },
|
||
|
{ logt_0x89, alog_0x89 }, /* 0 100- */
|
||
|
{ NULL, NULL },
|
||
|
{ NULL, NULL },
|
||
|
{ NULL, NULL },
|
||
|
{ logt_0x11d, alog_0x11d }, /* 1 000- */
|
||
|
{ logt_0x12d, alog_0x12d }, /* 1 001- */
|
||
|
{ NULL, NULL },
|
||
|
{ logt_0x163, alog_0x163 }, /* 1 011- */
|
||
|
};
|
||
|
|
||
|
/* Using bits 9-6 as hash to save a few cycles */
|
||
|
/* Alter this hash or just iterate if new prime poly added that doesn't fit */
|
||
|
unsigned int hash = prime_poly >> 5;
|
||
|
|
||
|
rs->logt = data[hash].logt;
|
||
|
rs->alog = data[hash].alog;
|
||
|
}
|
||
|
|
||
|
// rs_init_code(&rs, nsym, index) initialises the Reed-Solomon encoder
|
||
|
// nsym is the number of symbols to be generated (to be appended
|
||
|
// to the input data). index is usually 1 - it is the index of
|
||
|
// the constant in the first term (i) of the RS generator polynomial:
|
||
|
// (x + 2**i)*(x + 2**(i+1))*... [nsym terms]
|
||
|
// For ECC200, index is 1.
|
||
|
|
||
|
INTERNAL void rs_init_code(rs_t *rs, const int nsym, int index) {
|
||
|
int i, k;
|
||
|
const unsigned char *logt = rs->logt;
|
||
|
const unsigned char *alog = rs->alog;
|
||
|
unsigned char *rspoly = rs->rspoly;
|
||
|
|
||
|
rs->nsym = nsym;
|
||
|
|
||
|
rspoly[0] = 1;
|
||
|
for (i = 1; i <= nsym; i++) {
|
||
|
rspoly[i] = 1;
|
||
|
for (k = i - 1; k > 0; k--) {
|
||
|
if (rspoly[k])
|
||
|
rspoly[k] = alog[logt[rspoly[k]] + index]; /* Multiply coeff by 2**index */
|
||
|
rspoly[k] ^= rspoly[k - 1]; /* Add coeff of x**(k-1) * x */
|
||
|
}
|
||
|
rspoly[0] = alog[logt[rspoly[0]] + index]; /* 2**(i + (i+1) + ... + index) */
|
||
|
index++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* rs_encode(&rs, datalen, data, res) generates nsym Reed-Solomon codes (nsym as given in rs_init_code())
|
||
|
* and places them in reverse order in res */
|
||
|
INTERNAL void rs_encode(const rs_t *rs, const int datalen, const unsigned char *data, unsigned char *res) {
|
||
|
int i, k;
|
||
|
const unsigned char *logt = rs->logt;
|
||
|
const unsigned char *alog = rs->alog;
|
||
|
const unsigned char *rspoly = rs->rspoly;
|
||
|
const int nsym = rs->nsym;
|
||
|
|
||
|
memset(res, 0, nsym);
|
||
|
for (i = 0; i < datalen; i++) {
|
||
|
unsigned int m = res[nsym - 1] ^ data[i];
|
||
|
if (m) {
|
||
|
unsigned int log_m = logt[m];
|
||
|
for (k = nsym - 1; k > 0; k--) {
|
||
|
if (rspoly[k])
|
||
|
res[k] = (unsigned char) (res[k - 1] ^ alog[log_m + logt[rspoly[k]]]);
|
||
|
else
|
||
|
res[k] = res[k - 1];
|
||
|
}
|
||
|
res[0] = alog[log_m + logt[rspoly[0]]]; /* rspoly[0] can't be zero */
|
||
|
} else {
|
||
|
memmove(res + 1, res, nsym - 1);
|
||
|
res[0] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The same as above but for unsigned int data and result - Aztec code compatible */
|
||
|
|
||
|
INTERNAL void rs_encode_uint(const rs_t *rs, const int datalen, const unsigned int *data, unsigned int *res) {
|
||
|
int i, k;
|
||
|
const unsigned char *logt = rs->logt;
|
||
|
const unsigned char *alog = rs->alog;
|
||
|
const unsigned char *rspoly = rs->rspoly;
|
||
|
const int nsym = rs->nsym;
|
||
|
|
||
|
memset(res, 0, sizeof(unsigned int) * nsym);
|
||
|
for (i = 0; i < datalen; i++) {
|
||
|
unsigned int m = res[nsym - 1] ^ data[i];
|
||
|
if (m) {
|
||
|
unsigned int log_m = logt[m];
|
||
|
for (k = nsym - 1; k > 0; k--) {
|
||
|
if (rspoly[k])
|
||
|
res[k] = res[k - 1] ^ alog[log_m + logt[rspoly[k]]];
|
||
|
else
|
||
|
res[k] = res[k - 1];
|
||
|
}
|
||
|
res[0] = alog[log_m + logt[rspoly[0]]];
|
||
|
} else {
|
||
|
memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
|
||
|
res[0] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Versions of the above for bitlengths > 8 and <= 30 and unsigned int data and results - Aztec code compatible */
|
||
|
|
||
|
// Usage:
|
||
|
// First call rs_uint_init_gf(&rs_uint, prime_poly, logmod) to set up the Galois Field parameters.
|
||
|
// Then call rs_uint_init_code(&rs_uint, nsym, index) to set the encoding size
|
||
|
// Then call rs_uint_encode(&rs_uint, datalen, data, out) to encode the data.
|
||
|
// Then call rs_uint_free(&rs_uint) to free the log tables.
|
||
|
|
||
|
/* `logmod` (field characteristic) will be 2**bitlength - 1, eg 1023 for bitlength 10, 4095 for bitlength 12 */
|
||
|
INTERNAL int rs_uint_init_gf(rs_uint_t *rs_uint, const unsigned int prime_poly, const int logmod) {
|
||
|
int b, p, v;
|
||
|
unsigned int *logt, *alog;
|
||
|
|
||
|
b = logmod + 1;
|
||
|
|
||
|
rs_uint->logt = NULL;
|
||
|
rs_uint->alog = NULL;
|
||
|
|
||
|
if (!(logt = (unsigned int *) calloc(b, sizeof(unsigned int)))) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (!(alog = (unsigned int *) calloc(b * 2, sizeof(unsigned int)))) {
|
||
|
free(logt);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Calculate the log/alog tables
|
||
|
for (p = 1, v = 0; v < logmod; v++) {
|
||
|
alog[v] = p;
|
||
|
alog[logmod + v] = p; /* Double up, avoids mod */
|
||
|
logt[p] = v;
|
||
|
p <<= 1;
|
||
|
if (p & b) /* If overflow */
|
||
|
p ^= prime_poly; /* Subtract prime poly */
|
||
|
}
|
||
|
rs_uint->logt = logt;
|
||
|
rs_uint->alog = alog;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
INTERNAL void rs_uint_init_code(rs_uint_t *rs_uint, const int nsym, int index) {
|
||
|
int i, k;
|
||
|
const unsigned int *logt = rs_uint->logt;
|
||
|
const unsigned int *alog = rs_uint->alog;
|
||
|
unsigned short *rspoly = rs_uint->rspoly;
|
||
|
|
||
|
if (logt == NULL || alog == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
rs_uint->nsym = nsym;
|
||
|
|
||
|
rspoly[0] = 1;
|
||
|
for (i = 1; i <= nsym; i++) {
|
||
|
rspoly[i] = 1;
|
||
|
for (k = i - 1; k > 0; k--) {
|
||
|
if (rspoly[k])
|
||
|
rspoly[k] = alog[(logt[rspoly[k]] + index)];
|
||
|
rspoly[k] ^= rspoly[k - 1];
|
||
|
}
|
||
|
rspoly[0] = alog[(logt[rspoly[0]] + index)];
|
||
|
index++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
INTERNAL void rs_uint_encode(const rs_uint_t *rs_uint, const int datalen, const unsigned int *data,
|
||
|
unsigned int *res) {
|
||
|
int i, k;
|
||
|
const unsigned int *logt = rs_uint->logt;
|
||
|
const unsigned int *alog = rs_uint->alog;
|
||
|
const unsigned short *rspoly = rs_uint->rspoly;
|
||
|
const int nsym = rs_uint->nsym;
|
||
|
|
||
|
memset(res, 0, sizeof(unsigned int) * nsym);
|
||
|
if (logt == NULL || alog == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
for (i = 0; i < datalen; i++) {
|
||
|
unsigned int m = res[nsym - 1] ^ data[i];
|
||
|
if (m) {
|
||
|
unsigned int log_m = logt[m];
|
||
|
for (k = nsym - 1; k > 0; k--) {
|
||
|
if (rspoly[k])
|
||
|
res[k] = res[k - 1] ^ alog[log_m + logt[rspoly[k]]];
|
||
|
else
|
||
|
res[k] = res[k - 1];
|
||
|
}
|
||
|
res[0] = alog[log_m + logt[rspoly[0]]];
|
||
|
} else {
|
||
|
memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
|
||
|
res[0] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
INTERNAL void rs_uint_free(rs_uint_t *rs_uint) {
|
||
|
if (rs_uint->logt) {
|
||
|
free(rs_uint->logt);
|
||
|
rs_uint->logt = NULL;
|
||
|
}
|
||
|
if (rs_uint->alog) {
|
||
|
free(rs_uint->alog);
|
||
|
rs_uint->alog = NULL;
|
||
|
}
|
||
|
}
|