/* qr.c Handles QR Code */ /* libzint - the open source barcode library Copyright (C) 2009 Robin Stuart This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #ifdef _MSC_VER #include #endif #include "common.h" #include #include "sjis.h" #include "qr.h" #include "reedsol.h" int in_alpha(int glyph) { /* Returns true if input glyph is in the Alphanumeric set */ int retval = 0; char cglyph = (char) glyph; if((cglyph >= '0') && (cglyph <= '9')) { retval = 1; } if((cglyph >= 'A') && (cglyph <= 'Z')) { retval = 1; } switch (cglyph) { case ' ': case '$': case '%': case '*': case '+': case '-': case '.': case '/': case ':': retval = 1; break; } return retval; } void define_mode(char mode[], int jisdata[], int length, int gs1) { /* Values placed into mode[] are: K = Kanji, B = Binary, A = Alphanumeric, N = Numeric */ int i, mlen, j; for(i = 0; i < length; i++) { if(jisdata[i] > 0xff) { mode[i] = 'K'; } else { mode[i] = 'B'; if(in_alpha(jisdata[i])) { mode[i] = 'A'; } if(gs1 && (jisdata[i] == '[')) { mode[i] = 'A'; } if((jisdata[i] >= '0') && (jisdata[i] <= '9')) { mode[i] = 'N'; } } } /* If less than 6 numeric digits together then don't use numeric mode */ for(i = 0; i < length; i++) { if(mode[i] == 'N') { if(((i != 0) && (mode[i - 1] != 'N')) || (i == 0)) { mlen = 0; while (((mlen + i) < length) && (mode[mlen + i] == 'N')) { mlen++; }; if(mlen < 6) { for(j = 0; j < mlen; j++) { mode[i + j] = 'A'; } } } } } /* If less than 4 alphanumeric characters together then don't use alphanumeric mode */ for(i = 0; i < length; i++) { if(mode[i] == 'A') { if(((i != 0) && (mode[i - 1] != 'A')) || (i == 0)) { mlen = 0; while (((mlen + i) < length) && (mode[mlen + i] == 'A')) { mlen++; }; if(mlen < 6) { for(j = 0; j < mlen; j++) { mode[i + j] = 'B'; } } } } } } int estimate_binary_length(char mode[], int length, int gs1) { /* Make an estimate (worst case scenario) of how long the binary string will be */ int i, count = 0; char current = 0; int a_count = 0; int n_count = 0; if(gs1) { count += 4; } for(i = 0; i < length; i++) { if(mode[i] != current) { switch(mode[i]) { case 'K': count += 12 + 4; current = 'K'; break; case 'B': count += 16 + 4; current = 'B'; break; case 'A': count += 13 + 4; current = 'A'; a_count = 0; break; case 'N': count += 14 + 4; current = 'N'; n_count = 0; break; } } switch(mode[i]) { case 'K': count += 13; break; case 'B': count += 8; break; case 'A': a_count++; if((a_count & 1) == 0) { count += 5; // 11 in total a_count = 0; } else count += 6; break; case 'N': n_count++; if((n_count % 3) == 0) { count += 3; // 10 in total n_count = 0; } else if ((n_count & 1) == 0) count += 3; // 7 in total else count += 4; break; } } return count; } static void qr_bscan(char *binary, int data, int h) { for (; h; h>>=1) { concat(binary, data & h ? "1" : "0"); } } void qr_binary(int datastream[], int version, int target_binlen, char mode[], int jisdata[], int length, int gs1, int est_binlen) { /* Convert input data to a binary stream and add padding */ int position = 0, debug = 0; int short_data_block_length, i, scheme = 1; char data_block, padbits; int current_binlen, current_bytes; int toggle, percent; #ifndef _MSC_VER char binary[est_binlen + 12]; #else char* binary = (char *)_alloca(est_binlen + 12); #endif strcpy(binary, ""); if(gs1) { concat(binary, "0101"); /* FNC1 */ } if(version <= 9) { scheme = 1; } else if((version >= 10) && (version <= 26)) { scheme = 2; } else if(version >= 27) { scheme = 3; } if(debug) { for(i = 0; i < length; i++) { printf("%c", mode[i]); } printf("\n"); } percent = 0; do { data_block = mode[position]; short_data_block_length = 0; do { short_data_block_length++; } while (((short_data_block_length + position) < length) && (mode[position + short_data_block_length] == data_block)); switch(data_block) { case 'K': /* Kanji mode */ /* Mode indicator */ concat(binary, "1000"); /* Character count indicator */ qr_bscan(binary, short_data_block_length, 0x20 << (scheme*2)); /* scheme = 1..3 */ if(debug) { printf("Kanji block (length %d)\n\t", short_data_block_length); } /* Character representation */ for(i = 0; i < short_data_block_length; i++) { int jis = jisdata[position + i]; int msb, lsb, prod; if(jis > 0x9fff) { jis -= 0xc140; } msb = (jis & 0xff00) >> 4; lsb = (jis & 0xff); prod = (msb * 0xc0) + lsb; qr_bscan(binary, prod, 0x1000); if(debug) { printf("0x%4X ", prod); } } if(debug) { printf("\n"); } break; case 'B': /* Byte mode */ /* Mode indicator */ concat(binary, "0100"); /* Character count indicator */ qr_bscan(binary, short_data_block_length, scheme > 1 ? 0x8000 : 0x80); /* scheme = 1..3 */ if(debug) { printf("Byte block (length %d)\n\t", short_data_block_length); } /* Character representation */ for(i = 0; i < short_data_block_length; i++) { int byte = jisdata[position + i]; if(gs1 && (byte == '[')) { byte = 0x1d; /* FNC1 */ } qr_bscan(binary, byte, 0x80); if(debug) { printf("0x%2X(%d) ", byte, byte); } } if(debug) { printf("\n"); } break; case 'A': /* Alphanumeric mode */ /* Mode indicator */ concat(binary, "0010"); /* Character count indicator */ qr_bscan(binary, short_data_block_length, 0x40 << (2 * scheme)); /* scheme = 1..3 */ if(debug) { printf("Alpha block (length %d)\n\t", short_data_block_length); } /* Character representation */ i = 0; while ( i < short_data_block_length ) { int count; int first = 0, second = 0, prod; if(percent == 0) { if(gs1 && (jisdata[position + i] == '%')) { first = posn(RHODIUM, '%'); second = posn(RHODIUM, '%'); count = 2; prod = (first * 45) + second; i++; } else { if(gs1 && (jisdata[position + i] == '[')) { first = posn(RHODIUM, '%'); /* FNC1 */ } else { first = posn(RHODIUM, (char) jisdata[position + i]); } count = 1; i++; prod = first; if(mode[position + i] == 'A') { if(gs1 && (jisdata[position + i] == '%')) { second = posn(RHODIUM, '%'); count = 2; prod = (first * 45) + second; percent = 1; } else { if(gs1 && (jisdata[position + i] == '[')) { second = posn(RHODIUM, '%'); /* FNC1 */ } else { second = posn(RHODIUM, (char) jisdata[position + i]); } count = 2; i++; prod = (first * 45) + second; } } } } else { first = posn(RHODIUM, '%'); count = 1; i++; prod = first; percent = 0; if(mode[position + i] == 'A') { if(gs1 && (jisdata[position + i] == '%')) { second = posn(RHODIUM, '%'); count = 2; prod = (first * 45) + second; percent = 1; } else { if(gs1 && (jisdata[position + i] == '[')) { second = posn(RHODIUM, '%'); /* FNC1 */ } else { second = posn(RHODIUM, (char) jisdata[position + i]); } count = 2; i++; prod = (first * 45) + second; } } } qr_bscan(binary, prod, count == 2 ? 0x400 : 0x20); /* count = 1..2 */ if(debug) { printf("0x%4X ", prod); } }; if(debug) { printf("\n"); } break; case 'N': /* Numeric mode */ /* Mode indicator */ concat(binary, "0001"); /* Character count indicator */ qr_bscan(binary, short_data_block_length, 0x80 << (2 * scheme)); /* scheme = 1..3 */ if(debug) { printf("Number block (length %d)\n\t", short_data_block_length); } /* Character representation */ i = 0; while ( i < short_data_block_length ) { int count; int first = 0, second = 0, third = 0, prod; first = posn(NEON, (char) jisdata[position + i]); count = 1; prod = first; if(mode[position + i + 1] == 'N') { second = posn(NEON, (char) jisdata[position + i + 1]); count = 2; prod = (prod * 10) + second; if(mode[position + i + 2] == 'N') { third = posn(NEON, (char) jisdata[position + i + 2]); count = 3; prod = (prod * 10) + third; } } qr_bscan(binary, prod, 1 << (3 * count)); /* count = 1..3 */ if(debug) { printf("0x%4X (%d)", prod, prod); } i += count; }; if(debug) { printf("\n"); } break; } position += short_data_block_length; } while (position < length) ; /* Terminator */ concat(binary, "0000"); current_binlen = strlen(binary); padbits = 8 - (current_binlen % 8); if(padbits == 8) { padbits = 0; } current_bytes = (current_binlen + padbits) / 8; /* Padding bits */ for(i = 0; i < padbits; i++) { concat(binary, "0"); } /* Put data into 8-bit codewords */ for(i = 0; i < current_bytes; i++) { datastream[i] = 0x00; if(binary[i * 8] == '1') { datastream[i] += 0x80; } if(binary[i * 8 + 1] == '1') { datastream[i] += 0x40; } if(binary[i * 8 + 2] == '1') { datastream[i] += 0x20; } if(binary[i * 8 + 3] == '1') { datastream[i] += 0x10; } if(binary[i * 8 + 4] == '1') { datastream[i] += 0x08; } if(binary[i * 8 + 5] == '1') { datastream[i] += 0x04; } if(binary[i * 8 + 6] == '1') { datastream[i] += 0x02; } if(binary[i * 8 + 7] == '1') { datastream[i] += 0x01; } } /* Add pad codewords */ toggle = 0; for(i = current_bytes; i < target_binlen; i++) { if(toggle == 0) { datastream[i] = 0xec; toggle = 1; } else { datastream[i] = 0x11; toggle = 0; } } if(debug) { printf("Resulting codewords:\n\t"); for(i = 0; i < target_binlen; i++) { printf("0x%2X ", datastream[i]); } printf("\n"); } } void add_ecc(int fullstream[], int datastream[], int version, int data_cw, int blocks) { /* Split data into blocks, add error correction and then interleave the blocks and error correction data */ int ecc_cw = qr_total_codewords[version - 1] - data_cw; int short_data_block_length = data_cw / blocks; int qty_long_blocks = data_cw % blocks; int qty_short_blocks = blocks - qty_long_blocks; int ecc_block_length = ecc_cw / blocks; int i, j, length_this_block, posn, debug = 0; #ifndef _MSC_VER unsigned char data_block[short_data_block_length + 2]; unsigned char ecc_block[ecc_block_length + 2]; int interleaved_data[data_cw + 2]; int interleaved_ecc[ecc_cw + 2]; #else unsigned char* data_block = (unsigned char *)_alloca(short_data_block_length + 2); unsigned char* ecc_block = (unsigned char *)_alloca(ecc_block_length + 2); int* interleaved_data = (int *)_alloca((data_cw + 2) * sizeof(int)); int* interleaved_ecc = (int *)_alloca((ecc_cw + 2) * sizeof(int)); #endif posn = 0; for(i = 0; i < blocks; i++) { if(i < qty_short_blocks) { length_this_block = short_data_block_length; } else { length_this_block = short_data_block_length + 1; } for(j = 0; j < ecc_block_length; j++) { ecc_block[j] = 0; } for(j = 0; j < length_this_block; j++) { data_block[j] = (unsigned char) datastream[posn + j]; } rs_init_gf(0x11d); rs_init_code(ecc_block_length, 0); rs_encode(length_this_block, data_block, ecc_block); rs_free(); if(debug) { printf("Block %d: ", i + 1); for(j = 0; j < length_this_block; j++) { printf("%2X ", data_block[j]); } if(i < qty_short_blocks) { printf(" "); } printf(" // "); for(j = 0; j < ecc_block_length; j++) { printf("%2X ", ecc_block[ecc_block_length - j - 1]); } printf("\n"); } for(j = 0; j < short_data_block_length; j++) { interleaved_data[(j * blocks) + i] = (int) data_block[j]; } if(i >= qty_short_blocks){ interleaved_data[(short_data_block_length * blocks) + (i - qty_short_blocks)] = (int) data_block[short_data_block_length]; } for(j = 0; j < ecc_block_length; j++) { interleaved_ecc[(j * blocks) + i] = (int) ecc_block[ecc_block_length - j - 1]; } posn += length_this_block; } for(j = 0; j < data_cw; j++) { fullstream[j] = interleaved_data[j]; } for(j = 0; j < ecc_cw; j++) { fullstream[j + data_cw] = interleaved_ecc[j]; } if(debug) { printf("\nData Stream: \n"); for(j = 0; j < (data_cw + ecc_cw); j++) { printf("%2X ", fullstream[j]); } printf("\n"); } } void place_finder(unsigned char grid[], int size, int x, int y) { int xp, yp; int finder[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 }; for(xp = 0; xp < 7; xp++) { for(yp = 0; yp < 7; yp++) { if (finder[xp + (7 * yp)] == 1) { grid[((yp + y) * size) + (xp + x)] = 0x11; } else { grid[((yp + y) * size) + (xp + x)] = 0x10; } } } } void place_align(unsigned char grid[], int size, int x, int y) { int xp, yp; int alignment[] = { 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 }; x -= 2; y -= 2; /* Input values represent centre of pattern */ for(xp = 0; xp < 5; xp++) { for(yp = 0; yp < 5; yp++) { if (alignment[xp + (5 * yp)] == 1) { grid[((yp + y) * size) + (xp + x)] = 0x11; } else { grid[((yp + y) * size) + (xp + x)] = 0x10; } } } } void setup_grid(unsigned char* grid, int size, int version) { int i, toggle = 1; int loopsize, x, y, xcoord, ycoord; /* Add timing patterns */ for(i = 0; i < size; i++) { if(toggle == 1) { grid[(6 * size) + i] = 0x21; grid[(i * size) + 6] = 0x21; toggle = 0; } else { grid[(6 * size) + i] = 0x20; grid[(i * size) + 6] = 0x20; toggle = 1; } } /* Add finder patterns */ place_finder(grid, size, 0, 0); place_finder(grid, size, 0, size - 7); place_finder(grid, size, size - 7, 0); /* Add separators */ for(i = 0; i < 7; i++) { grid[(7 * size) + i] = 0x10; grid[(i * size) + 7] = 0x10; grid[(7 * size) + (size - 1 - i)] = 0x10; grid[(i * size) + (size - 8)] = 0x10; grid[((size - 8) * size) + i] = 0x10; grid[((size - 1 - i) * size) + 7] = 0x10; } grid[(7 * size) + 7] = 0x10; grid[(7 * size) + (size - 8)] = 0x10; grid[((size - 8) * size) + 7] = 0x10; /* Add alignment patterns */ if(version != 1) { /* Version 1 does not have alignment patterns */ loopsize = qr_align_loopsize[version - 1]; for(x = 0; x < loopsize; x++) { for(y = 0; y < loopsize; y++) { xcoord = qr_table_e1[((version - 2) * 7) + x]; ycoord = qr_table_e1[((version - 2) * 7) + y]; if(!(grid[(ycoord * size) + xcoord] & 0x10)) { place_align(grid, size, xcoord, ycoord); } } } } /* Reserve space for format information */ for(i = 0; i < 8; i++) { grid[(8 * size) + i] += 0x20; grid[(i * size) + 8] += 0x20; grid[(8 * size) + (size - 1 - i)] = 0x20; grid[((size - 1 - i) * size) + 8] = 0x20; } grid[(8 * size) + 8] += 20; grid[((size - 1 - 7) * size) + 8] = 0x21; /* Dark Module from Figure 25 */ /* Reserve space for version information */ if(version >= 7) { for(i = 0; i < 6; i++) { grid[((size - 9) * size) + i] = 0x20; grid[((size - 10) * size) + i] = 0x20; grid[((size - 11) * size) + i] = 0x20; grid[(i * size) + (size - 9)] = 0x20; grid[(i * size) + (size - 10)] = 0x20; grid[(i * size) + (size - 11)] = 0x20; } } } int cwbit(int* datastream, int i) { int word = i / 8; int bit = i % 8; int resultant = 0; switch(bit) { case 0: if(datastream[word] & 0x80) { resultant = 1; } else { resultant = 0; } break; case 1: if(datastream[word] & 0x40) { resultant = 1; } else { resultant = 0; } break; case 2: if(datastream[word] & 0x20) { resultant = 1; } else { resultant = 0; } break; case 3: if(datastream[word] & 0x10) { resultant = 1; } else { resultant = 0; } break; case 4: if(datastream[word] & 0x08) { resultant = 1; } else { resultant = 0; } break; case 5: if(datastream[word] & 0x04) { resultant = 1; } else { resultant = 0; } break; case 6: if(datastream[word] & 0x02) { resultant = 1; } else { resultant = 0; } break; case 7: if(datastream[word] & 0x01) { resultant = 1; } else { resultant = 0; } break; } return resultant; } void populate_grid(unsigned char* grid, int size, int* datastream, int cw) { int direction = 1; /* up */ int row = 0; /* right hand side */ int i, n, x, y; n = cw * 8; y = size - 1; i = 0; do { x = (size - 2) - (row * 2); if(x < 6) x--; /* skip over vertical timing pattern */ if(!(grid[(y * size) + (x + 1)] & 0xf0)) { if (cwbit(datastream, i)) { grid[(y * size) + (x + 1)] = 0x01; } else { grid[(y * size) + (x + 1)] = 0x00; } i++; } if(i < n) { if(!(grid[(y * size) + x] & 0xf0)) { if (cwbit(datastream, i)) { grid[(y * size) + x] = 0x01; } else { grid[(y * size) + x] = 0x00; } i++; } } if(direction) { y--; } else { y++; } if(y == -1) { /* reached the top */ row++; y = 0; direction = 0; } if(y == size) { /* reached the bottom */ row++; y = size - 1; direction = 1; } } while (i < n); } int evaluate(unsigned char *grid, int size, int pattern) { int x, y, block; int result = 0; char state; int p; int dark_mods; int percentage, k; #ifndef _MSC_VER char local[size * size]; #else char* local = (char *)_alloca((size * size) * sizeof(char)); #endif for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { switch(pattern) { case 0: if (grid[(y * size) + x] & 0x01) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; case 1: if (grid[(y * size) + x] & 0x02) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; case 2: if (grid[(y * size) + x] & 0x04) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; case 3: if (grid[(y * size) + x] & 0x08) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; case 4: if (grid[(y * size) + x] & 0x10) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; case 5: if (grid[(y * size) + x] & 0x20) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; case 6: if (grid[(y * size) + x] & 0x40) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; case 7: if (grid[(y * size) + x] & 0x80) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break; } } } /* Test 1: Adjacent modules in row/column in same colour */ /* Vertical */ for(x = 0; x < size; x++) { state = local[x]; block = 0; for(y = 0; y < size; y++) { if(local[(y * size) + x] == state) { block++; } else { if(block > 5) { result += (3 + block); } block = 0; state = local[(y * size) + x]; } } if(block > 5) { result += (3 + block); } } /* Horizontal */ for(y = 0; y < size; y++) { state = local[y * size]; block = 0; for(x = 0; x < size; x++) { if(local[(y * size) + x] == state) { block++; } else { if(block > 5) { result += (3 + block); } block = 0; state = local[(y * size) + x]; } } if(block > 5) { result += (3 + block); } } /* Test 2 is not implimented */ /* Test 3: 1:1:3:1:1 ratio pattern in row/column */ /* Vertical */ for(x = 0; x < size; x++) { for(y = 0; y < (size - 7); y++) { p = 0; if(local[(y * size) + x] == '1') { p += 0x40; } if(local[((y + 1) * size) + x] == '1') { p += 0x20; } if(local[((y + 2) * size) + x] == '1') { p += 0x10; } if(local[((y + 3) * size) + x] == '1') { p += 0x08; } if(local[((y + 4) * size) + x] == '1') { p += 0x04; } if(local[((y + 5) * size) + x] == '1') { p += 0x02; } if(local[((y + 6) * size) + x] == '1') { p += 0x01; } if(p == 0x5d) { result += 40; } } } /* Horizontal */ for(y = 0; y < size; y++) { for(x = 0; x < (size - 7); x++) { p = 0; if(local[(y * size) + x] == '1') { p += 0x40; } if(local[(y * size) + x + 1] == '1') { p += 0x20; } if(local[(y * size) + x + 2] == '1') { p += 0x10; } if(local[(y * size) + x + 3] == '1') { p += 0x08; } if(local[(y * size) + x + 4] == '1') { p += 0x04; } if(local[(y * size) + x + 5] == '1') { p += 0x02; } if(local[(y * size) + x + 6] == '1') { p += 0x01; } if(p == 0x5d) { result += 40; } } } /* Test 4: Proportion of dark modules in entire symbol */ dark_mods = 0; for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { if(local[(y * size) + x] == '1') { dark_mods++; } } } percentage = 100 * (dark_mods / (size * size)); if(percentage <= 50) { k = ((100 - percentage) - 50) / 5; } else { k = (percentage - 50) / 5; } result += 10 * k; return result; } int apply_bitmask(unsigned char *grid, int size) { int x, y; unsigned char p; int pattern, penalty[8]; int best_val, best_pattern; int bit; #ifndef _MSC_VER unsigned char mask[size * size]; unsigned char eval[size * size]; #else unsigned char* mask = (unsigned char *)_alloca((size * size) * sizeof(unsigned char)); unsigned char* eval = (unsigned char *)_alloca((size * size) * sizeof(unsigned char)); #endif /* Perform data masking */ for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { mask[(y * size) + x] = 0x00; if (!(grid[(y * size) + x] & 0xf0)) { if(((y + x) & 1) == 0) { mask[(y * size) + x] += 0x01; } if((y & 1) == 0) { mask[(y * size) + x] += 0x02; } if((x % 3) == 0) { mask[(y * size) + x] += 0x04; } if(((y + x) % 3) == 0) { mask[(y * size) + x] += 0x08; } if((((y / 2) + (x / 3)) & 1) == 0) { mask[(y * size) + x] += 0x10; } if((((y * x) & 1) + ((y * x) % 3)) == 0) { mask[(y * size) + x] += 0x20; } if(((((y * x) & 1) + ((y * x) % 3)) & 1) == 0) { mask[(y * size) + x] += 0x40; } if(((((y + x) & 1) + ((y * x) % 3)) & 1) == 0) { mask[(y * size) + x] += 0x80; } } } } for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { if(grid[(y * size) + x] & 0x01) { p = 0xff; } else { p = 0x00; } eval[(y * size) + x] = mask[(y * size) + x] ^ p; } } /* Evaluate result */ for(pattern = 0; pattern < 8; pattern++) { penalty[pattern] = evaluate(eval, size, pattern); } best_pattern = 0; best_val = penalty[0]; for(pattern = 1; pattern < 8; pattern++) { if(penalty[pattern] < best_val) { best_pattern = pattern; best_val = penalty[pattern]; } } /* Apply mask */ for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { bit = 0; switch(best_pattern) { case 0: if(mask[(y * size) + x] & 0x01) { bit = 1; } break; case 1: if(mask[(y * size) + x] & 0x02) { bit = 1; } break; case 2: if(mask[(y * size) + x] & 0x04) { bit = 1; } break; case 3: if(mask[(y * size) + x] & 0x08) { bit = 1; } break; case 4: if(mask[(y * size) + x] & 0x10) { bit = 1; } break; case 5: if(mask[(y * size) + x] & 0x20) { bit = 1; } break; case 6: if(mask[(y * size) + x] & 0x40) { bit = 1; } break; case 7: if(mask[(y * size) + x] & 0x80) { bit = 1; } break; } if(bit == 1) { if(grid[(y * size) + x] & 0x01) { grid[(y * size) + x] = 0x00; } else { grid[(y * size) + x] = 0x01; } } } } return best_pattern; } void add_format_info(unsigned char *grid, int size, int ecc_level, int pattern) { /* Add format information to grid */ int format = pattern; unsigned int seq; int i; switch(ecc_level) { case LEVEL_L: format += 0x08; break; case LEVEL_Q: format += 0x18; break; case LEVEL_H: format += 0x10; break; } seq = qr_annex_c[format]; for(i = 0; i < 6; i++) { grid[(i * size) + 8] += (seq >> i) & 0x01; } for(i = 0; i < 8; i++) { grid[(8 * size) + (size - i - 1)] += (seq >> i) & 0x01; } for(i = 0; i < 6; i++) { grid[(8 * size) + (5 - i)] += (seq >> (i + 9)) & 0x01; } for(i = 0; i < 7; i++) { grid[(((size - 7) + i) * size) + 8] += (seq >> (i + 8)) & 0x01; } grid[(7 * size) + 8] += (seq >> 6) & 0x01; grid[(8 * size) + 8] += (seq >> 7) & 0x01; grid[(8 * size) + 7] += (seq >> 8) & 0x01; } void add_version_info(unsigned char *grid, int size, int version) { /* Add version information */ int i; long int version_data = qr_annex_d[version - 7]; for(i = 0; i < 6; i++) { grid[((size - 11) * size) + i] += (version_data >> (i * 3)) & 0x01; grid[((size - 10) * size) + i] += (version_data >> ((i * 3) + 1)) & 0x01; grid[((size - 9) * size) + i] += (version_data >> ((i * 3) + 2)) & 0x01; grid[(i * size) + (size - 11)] += (version_data >> (i * 3)) & 0x01; grid[(i * size) + (size - 10)] += (version_data >> ((i * 3) + 1)) & 0x01; grid[(i * size) + (size - 9)] += (version_data >> ((i * 3) + 2)) & 0x01; } } int qr_code(struct zint_symbol *symbol, unsigned char source[], int length) { int error_number, i, j, glyph, est_binlen; int ecc_level, autosize, version, max_cw, target_binlen, blocks, size; int bitmask, gs1; #ifndef _MSC_VER int utfdata[length + 1]; int jisdata[length + 1]; char mode[length + 1]; #else int* datastream; int* fullstream; unsigned char* grid; int* utfdata = (int *)_alloca((length + 1) * sizeof(int)); int* jisdata = (int *)_alloca((length + 1) * sizeof(int)); char* mode = (char *)_alloca(length + 1); #endif gs1 = (symbol->input_mode == GS1_MODE); switch(symbol->input_mode) { case DATA_MODE: for(i = 0; i < length; i++) { jisdata[i] = (int)source[i]; } break; default: /* Convert Unicode input to Shift-JIS */ error_number = utf8toutf16(symbol, source, utfdata, &length); if(error_number != 0) { return error_number; } for(i = 0; i < length; i++) { if(utfdata[i] <= 0xff) { jisdata[i] = utfdata[i]; } else { j = 0; glyph = 0; do { if(sjis_lookup[j * 2] == utfdata[i]) { glyph = sjis_lookup[(j * 2) + 1]; } j++; } while ((j < 6843) && (glyph == 0)); if(glyph == 0) { strcpy(symbol->errtxt, "Invalid character in input data"); return ERROR_INVALID_DATA1; } jisdata[i] = glyph; } } break; } define_mode(mode, jisdata, length, gs1); est_binlen = estimate_binary_length(mode, length, gs1); ecc_level = LEVEL_L; max_cw = 2956; if((symbol->option_1 >= 1) && (symbol->option_1 <= 4)) { switch (symbol->option_1) { case 1: ecc_level = LEVEL_L; max_cw = 2956; break; case 2: ecc_level = LEVEL_M; max_cw = 2334; break; case 3: ecc_level = LEVEL_Q; max_cw = 1666; break; case 4: ecc_level = LEVEL_H; max_cw = 1276; break; } } if(est_binlen > (8 * max_cw)) { strcpy(symbol->errtxt, "Input too long for selected error correction level"); return ERROR_TOO_LONG; } autosize = 40; for(i = 39; i >= 0; i--) { switch(ecc_level) { case LEVEL_L: if ((8 * qr_data_codewords_L[i]) >= est_binlen) { autosize = i + 1; } break; case LEVEL_M: if ((8 * qr_data_codewords_M[i]) >= est_binlen) { autosize = i + 1; } break; case LEVEL_Q: if ((8 * qr_data_codewords_Q[i]) >= est_binlen) { autosize = i + 1; } break; case LEVEL_H: if ((8 * qr_data_codewords_H[i]) >= est_binlen) { autosize = i + 1; } break; } } if((symbol->option_2 >= 1) && (symbol->option_2 <= 40)) { if (symbol->option_2 > autosize) { version = symbol->option_2; } else { version = autosize; } } else { version = autosize; } /* Ensure maxium error correction capacity */ if(est_binlen <= qr_data_codewords_M[version - 1]) { ecc_level = LEVEL_M; } if(est_binlen <= qr_data_codewords_Q[version - 1]) { ecc_level = LEVEL_Q; } if(est_binlen <= qr_data_codewords_H[version - 1]) { ecc_level = LEVEL_H; } target_binlen = qr_data_codewords_L[version - 1]; blocks = qr_blocks_L[version - 1]; switch(ecc_level) { case LEVEL_M: target_binlen = qr_data_codewords_M[version - 1]; blocks = qr_blocks_M[version - 1]; break; case LEVEL_Q: target_binlen = qr_data_codewords_Q[version - 1]; blocks = qr_blocks_Q[version - 1]; break; case LEVEL_H: target_binlen = qr_data_codewords_H[version - 1]; blocks = qr_blocks_H[version - 1]; break; } #ifndef _MSC_VER int datastream[target_binlen + 1]; int fullstream[qr_total_codewords[version - 1] + 1]; #else datastream = (int *)_alloca((target_binlen + 1) * sizeof(int)); fullstream = (int *)_alloca((qr_total_codewords[version - 1] + 1) * sizeof(int)); #endif qr_binary(datastream, version, target_binlen, mode, jisdata, length, gs1, est_binlen); add_ecc(fullstream, datastream, version, target_binlen, blocks); size = qr_sizes[version - 1]; #ifndef _MSC_VER unsigned char grid[size * size]; #else grid = (unsigned char *)_alloca((size * size) * sizeof(unsigned char)); #endif for(i = 0; i < size; i++) { for(j = 0; j < size; j++) { grid[(i * size) + j] = 0; } } setup_grid(grid, size, version); populate_grid(grid, size, fullstream, qr_total_codewords[version - 1]); bitmask = apply_bitmask(grid, size); add_format_info(grid, size, ecc_level, bitmask); if(version >= 7) { add_version_info(grid, size, version); } symbol->width = size; symbol->rows = size; for(i = 0; i < size; i++) { for(j = 0; j < size; j++) { if(grid[(i * size) + j] & 0x01) { set_module(symbol, i, j); } } symbol->row_height[i] = 1; } return 0; } /* NOTE: From this point forward concerns Micro QR Code only */ int micro_qr_intermediate(char binary[], int jisdata[], char mode[], int length, int *kanji_used, int *alphanum_used, int *byte_used) { /* Convert input data to an "intermediate stage" where data is binary encoded but control information is not */ int position = 0, debug = 0; int short_data_block_length, i; char data_block; char buffer[2]; strcpy(binary, ""); if(debug) { for(i = 0; i < length; i++) { printf("%c", mode[i]); } printf("\n"); } do { if(strlen(binary) > 128) { return ERROR_TOO_LONG; } data_block = mode[position]; short_data_block_length = 0; do { short_data_block_length++; } while (((short_data_block_length + position) < length) && (mode[position + short_data_block_length] == data_block)); switch(data_block) { case 'K': /* Kanji mode */ /* Mode indicator */ concat(binary, "K"); *kanji_used = 1; /* Character count indicator */ buffer[0] = short_data_block_length; buffer[1] = '\0'; concat(binary, buffer); if(debug) { printf("Kanji block (length %d)\n\t", short_data_block_length); } /* Character representation */ for(i = 0; i < short_data_block_length; i++) { int jis = jisdata[position + i]; int msb, lsb, prod; if(jis > 0x9fff) { jis -= 0xc140; } msb = (jis & 0xff00) >> 4; lsb = (jis & 0xff); prod = (msb * 0xc0) + lsb; qr_bscan(binary, prod, 0x1000); if(debug) { printf("0x%4X ", prod); } if(strlen(binary) > 128) { return ERROR_TOO_LONG; } } if(debug) { printf("\n"); } break; case 'B': /* Byte mode */ /* Mode indicator */ concat(binary, "B"); *byte_used = 1; /* Character count indicator */ buffer[0] = short_data_block_length; buffer[1] = '\0'; concat(binary, buffer); if(debug) { printf("Byte block (length %d)\n\t", short_data_block_length); } /* Character representation */ for(i = 0; i < short_data_block_length; i++) { int byte = jisdata[position + i]; qr_bscan(binary, byte, 0x80); if(debug) { printf("0x%4X ", byte); } if(strlen(binary) > 128) { return ERROR_TOO_LONG; } } if(debug) { printf("\n"); } break; case 'A': /* Alphanumeric mode */ /* Mode indicator */ concat(binary, "A"); *alphanum_used = 1; /* Character count indicator */ buffer[0] = short_data_block_length; buffer[1] = '\0'; concat(binary, buffer); if(debug) { printf("Alpha block (length %d)\n\t", short_data_block_length); } /* Character representation */ i = 0; while ( i < short_data_block_length ) { int count; int first = 0, second = 0, prod; first = posn(RHODIUM, (char) jisdata[position + i]); count = 1; prod = first; if(mode[position + i + 1] == 'A') { second = posn(RHODIUM, (char) jisdata[position + i + 1]); count = 2; prod = (first * 45) + second; } qr_bscan(binary, prod, 1 << (5 * count)); /* count = 1..2 */ if(debug) { printf("0x%4X ", prod); } if(strlen(binary) > 128) { return ERROR_TOO_LONG; } i += 2; }; if(debug) { printf("\n"); } break; case 'N': /* Numeric mode */ /* Mode indicator */ concat(binary, "N"); /* Character count indicator */ buffer[0] = short_data_block_length; buffer[1] = '\0'; concat(binary, buffer); if(debug) { printf("Number block (length %d)\n\t", short_data_block_length); } /* Character representation */ i = 0; while ( i < short_data_block_length ) { int count; int first = 0, second = 0, third = 0, prod; first = posn(NEON, (char) jisdata[position + i]); count = 1; prod = first; if(mode[position + i + 1] == 'N') { second = posn(NEON, (char) jisdata[position + i + 1]); count = 2; prod = (prod * 10) + second; } if(mode[position + i + 2] == 'N') { third = posn(NEON, (char) jisdata[position + i + 2]); count = 3; prod = (prod * 10) + third; } qr_bscan(binary, prod, 1 << (3 * count)); /* count = 1..3 */ if(debug) { printf("0x%4X (%d)", prod, prod); } if(strlen(binary) > 128) { return ERROR_TOO_LONG; } i += 3; }; if(debug) { printf("\n"); } break; } position += short_data_block_length; } while (position < length - 1) ; return 0; } void get_bitlength(int count[], char stream[]) { int length, i; length = strlen(stream); for(i = 0; i < 4; i++) { count[i] = 0; } i = 0; do { if((stream[i] == '0') || (stream[i] == '1')) { count[0]++; count[1]++; count[2]++; count[3]++; i++; } else { switch(stream[i]) { case 'K': count[2] += 5; count[3] += 7; i += 2; break; case 'B': count[2] += 6; count[3] += 8; i += 2; break; case 'A': count[1] += 4; count[2] += 6; count[3] += 8; i += 2; break; case 'N': count[0] += 3; count[1] += 5; count[2] += 7; count[3] += 9; i += 2; break; } } } while (i < length); } void microqr_expand_binary(char binary_stream[], char full_stream[], int version) { int i, length; length = strlen(binary_stream); i = 0; do { switch(binary_stream[i]) { case '1': concat(full_stream, "1"); i++; break; case '0': concat(full_stream, "0"); i++; break; case 'N': /* Numeric Mode */ /* Mode indicator */ switch(version) { case 1: concat(full_stream, "0"); break; case 2: concat(full_stream, "00"); break; case 3: concat(full_stream, "000"); break; } /* Character count indicator */ qr_bscan(full_stream, binary_stream[i + 1], 4 << version); /* version = 0..3 */ i += 2; break; case 'A': /* Alphanumeric Mode */ /* Mode indicator */ switch(version) { case 1: concat(full_stream, "1"); break; case 2: concat(full_stream, "01"); break; case 3: concat(full_stream, "001"); break; } /* Character count indicator */ qr_bscan(full_stream, binary_stream[i + 1], 2 << version); /* version = 1..3 */ i += 2; break; case 'B': /* Byte Mode */ /* Mode indicator */ switch(version) { case 2: concat(full_stream, "10"); break; case 3: concat(full_stream, "010"); break; } /* Character count indicator */ qr_bscan(full_stream, binary_stream[i + 1], 2 << version); /* version = 2..3 */ i += 2; break; case 'K': /* Kanji Mode */ /* Mode indicator */ switch(version) { case 2: concat(full_stream, "11"); break; case 3: concat(full_stream, "011"); break; } /* Character count indicator */ qr_bscan(full_stream, binary_stream[i + 1], 1 << version); /* version = 2..3 */ i += 2; break; } } while (i < length); } void micro_qr_m1(char binary_data[]) { int i, latch; int bits_total, bits_left, remainder; int data_codewords, ecc_codewords; unsigned char data_blocks[4], ecc_blocks[3]; bits_total = 20; latch = 0; /* Add terminator */ bits_left = bits_total - strlen(binary_data); if(bits_left <= 3) { for(i = 0; i < bits_left; i++) { concat(binary_data, "0"); } latch = 1; } else { concat(binary_data, "000"); } if(latch == 0) { /* Manage last (4-bit) block */ bits_left = bits_total - strlen(binary_data); if(bits_left <= 4) { for(i = 0; i < bits_left; i++) { concat(binary_data, "0"); } latch = 1; } } if(latch == 0) { /* Complete current byte */ remainder = 8 - (strlen(binary_data) % 8); if(remainder == 8) { remainder = 0; } for(i = 0; i < remainder; i++) { concat(binary_data, "0"); } /* Add padding */ bits_left = bits_total - strlen(binary_data); if(bits_left > 4) { remainder = (bits_left - 4) / 8; for(i = 0; i < remainder; i++) { concat(binary_data, i & 1 ? "00010001" : "11101100"); } } concat(binary_data, "0000"); } data_codewords = 3; ecc_codewords = 2; /* Copy data into codewords */ for(i = 0; i < (data_codewords - 1); i++) { data_blocks[i] = 0; if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; } if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; } if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; } if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; } if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; } if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; } if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; } if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; } } data_blocks[2] = 0; if(binary_data[16] == '1') { data_blocks[2] += 0x08; } if(binary_data[17] == '1') { data_blocks[2] += 0x04; } if(binary_data[18] == '1') { data_blocks[2] += 0x02; } if(binary_data[19] == '1') { data_blocks[2] += 0x01; } /* Calculate Reed-Solomon error codewords */ rs_init_gf(0x11d); rs_init_code(ecc_codewords, 0); rs_encode(data_codewords,data_blocks,ecc_blocks); rs_free(); /* Add Reed-Solomon codewords to binary data */ for(i = 0; i < ecc_codewords; i++) { qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80); } } void micro_qr_m2(char binary_data[], int ecc_mode) { int i, latch; int bits_total, bits_left, remainder; int data_codewords, ecc_codewords; unsigned char data_blocks[6], ecc_blocks[7]; latch = 0; if(ecc_mode == LEVEL_L) { bits_total = 40; } if(ecc_mode == LEVEL_M) { bits_total = 32; } /* Add terminator */ bits_left = bits_total - strlen(binary_data); if(bits_left <= 5) { for(i = 0; i < bits_left; i++) { concat(binary_data, "0"); } latch = 1; } else { concat(binary_data, "00000"); } if(latch == 0) { /* Complete current byte */ remainder = 8 - (strlen(binary_data) % 8); if(remainder == 8) { remainder = 0; } for(i = 0; i < remainder; i++) { concat(binary_data, "0"); } /* Add padding */ bits_left = bits_total - strlen(binary_data); remainder = bits_left / 8; for(i = 0; i < remainder; i++) { concat(binary_data, i & 1 ? "00010001" : "11101100"); } } if(ecc_mode == LEVEL_L) { data_codewords = 5; ecc_codewords = 5; } if(ecc_mode == LEVEL_M) { data_codewords = 4; ecc_codewords = 6; } /* Copy data into codewords */ for(i = 0; i < data_codewords; i++) { data_blocks[i] = 0; if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; } if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; } if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; } if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; } if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; } if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; } if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; } if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; } } /* Calculate Reed-Solomon error codewords */ rs_init_gf(0x11d); rs_init_code(ecc_codewords, 0); rs_encode(data_codewords,data_blocks,ecc_blocks); rs_free(); /* Add Reed-Solomon codewords to binary data */ for(i = 0; i < ecc_codewords; i++) { qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80); } return; } void micro_qr_m3(char binary_data[], int ecc_mode) { int i, latch; int bits_total, bits_left, remainder; int data_codewords, ecc_codewords; unsigned char data_blocks[12], ecc_blocks[9]; latch = 0; if(ecc_mode == LEVEL_L) { bits_total = 84; } if(ecc_mode == LEVEL_M) { bits_total = 68; } /* Add terminator */ bits_left = bits_total - strlen(binary_data); if(bits_left <= 7) { for(i = 0; i < bits_left; i++) { concat(binary_data, "0"); } latch = 1; } else { concat(binary_data, "0000000"); } if(latch == 0) { /* Manage last (4-bit) block */ bits_left = bits_total - strlen(binary_data); if(bits_left <= 4) { for(i = 0; i < bits_left; i++) { concat(binary_data, "0"); } latch = 1; } } if(latch == 0) { /* Complete current byte */ remainder = 8 - (strlen(binary_data) % 8); if(remainder == 8) { remainder = 0; } for(i = 0; i < remainder; i++) { concat(binary_data, "0"); } /* Add padding */ bits_left = bits_total - strlen(binary_data); if(bits_left > 4) { remainder = (bits_left - 4) / 8; for(i = 0; i < remainder; i++) { concat(binary_data, i & 1 ? "00010001" : "11101100"); } } concat(binary_data, "0000"); } if(ecc_mode == LEVEL_L) { data_codewords = 11; ecc_codewords = 6; } if(ecc_mode == LEVEL_M) { data_codewords = 9; ecc_codewords = 8; } /* Copy data into codewords */ for(i = 0; i < (data_codewords - 1); i++) { data_blocks[i] = 0; if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; } if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; } if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; } if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; } if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; } if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; } if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; } if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; } } if(ecc_mode == LEVEL_L) { data_blocks[11] = 0; if(binary_data[80] == '1') { data_blocks[2] += 0x08; } if(binary_data[81] == '1') { data_blocks[2] += 0x04; } if(binary_data[82] == '1') { data_blocks[2] += 0x02; } if(binary_data[83] == '1') { data_blocks[2] += 0x01; } } if(ecc_mode == LEVEL_M) { data_blocks[9] = 0; if(binary_data[64] == '1') { data_blocks[2] += 0x08; } if(binary_data[65] == '1') { data_blocks[2] += 0x04; } if(binary_data[66] == '1') { data_blocks[2] += 0x02; } if(binary_data[67] == '1') { data_blocks[2] += 0x01; } } /* Calculate Reed-Solomon error codewords */ rs_init_gf(0x11d); rs_init_code(ecc_codewords, 0); rs_encode(data_codewords,data_blocks,ecc_blocks); rs_free(); /* Add Reed-Solomon codewords to binary data */ for(i = 0; i < ecc_codewords; i++) { qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80); } return; } void micro_qr_m4(char binary_data[], int ecc_mode) { int i, latch; int bits_total, bits_left, remainder; int data_codewords, ecc_codewords; unsigned char data_blocks[17], ecc_blocks[15]; latch = 0; if(ecc_mode == LEVEL_L) { bits_total = 128; } if(ecc_mode == LEVEL_M) { bits_total = 112; } if(ecc_mode == LEVEL_Q) { bits_total = 80; } /* Add terminator */ bits_left = bits_total - strlen(binary_data); if(bits_left <= 9) { for(i = 0; i < bits_left; i++) { concat(binary_data, "0"); } latch = 1; } else { concat(binary_data, "000000000"); } if(latch == 0) { /* Complete current byte */ remainder = 8 - (strlen(binary_data) % 8); if(remainder == 8) { remainder = 0; } for(i = 0; i < remainder; i++) { concat(binary_data, "0"); } /* Add padding */ bits_left = bits_total - strlen(binary_data); remainder = bits_left / 8; for(i = 0; i < remainder; i++) { concat(binary_data, i & 1 ? "00010001" : "11101100"); } } if(ecc_mode == LEVEL_L) { data_codewords = 16; ecc_codewords = 8; } if(ecc_mode == LEVEL_M) { data_codewords = 14; ecc_codewords = 10; } if(ecc_mode == LEVEL_Q) { data_codewords = 10; ecc_codewords = 14; } /* Copy data into codewords */ for(i = 0; i < data_codewords; i++) { data_blocks[i] = 0; if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; } if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; } if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; } if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; } if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; } if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; } if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; } if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; } } /* Calculate Reed-Solomon error codewords */ rs_init_gf(0x11d); rs_init_code(ecc_codewords, 0); rs_encode(data_codewords,data_blocks,ecc_blocks); rs_free(); /* Add Reed-Solomon codewords to binary data */ for(i = 0; i < ecc_codewords; i++) { qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80); } } void micro_setup_grid(unsigned char* grid, int size) { int i, toggle = 1; /* Add timing patterns */ for(i = 0; i < size; i++) { if(toggle == 1) { grid[i] = 0x21; grid[(i * size)] = 0x21; toggle = 0; } else { grid[i] = 0x20; grid[(i * size)] = 0x20; toggle = 1; } } /* Add finder patterns */ place_finder(grid, size, 0, 0); /* Add separators */ for(i = 0; i < 7; i++) { grid[(7 * size) + i] = 0x10; grid[(i * size) + 7] = 0x10; } grid[(7 * size) + 7] = 0x10; /* Reserve space for format information */ for(i = 0; i < 8; i++) { grid[(8 * size) + i] += 0x20; grid[(i * size) + 8] += 0x20; } grid[(8 * size) + 8] += 20; } void micro_populate_grid(unsigned char* grid, int size, char full_stream[]) { int direction = 1; /* up */ int row = 0; /* right hand side */ int i, n, x, y; n = strlen(full_stream); y = size - 1; i = 0; do { x = (size - 2) - (row * 2); if(!(grid[(y * size) + (x + 1)] & 0xf0)) { if (full_stream[i] == '1') { grid[(y * size) + (x + 1)] = 0x01; } else { grid[(y * size) + (x + 1)] = 0x00; } i++; } if(i < n) { if(!(grid[(y * size) + x] & 0xf0)) { if (full_stream[i] == '1') { grid[(y * size) + x] = 0x01; } else { grid[(y * size) + x] = 0x00; } i++; } } if(direction) { y--; } else { y++; } if(y == 0) { /* reached the top */ row++; y = 1; direction = 0; } if(y == size) { /* reached the bottom */ row++; y = size - 1; direction = 1; } } while (i < n); } int micro_evaluate(unsigned char *grid, int size, int pattern) { int sum1, sum2, i, filter = 0, retval; switch(pattern) { case 0: filter = 0x01; break; case 1: filter = 0x02; break; case 2: filter = 0x04; break; case 3: filter = 0x08; break; } sum1 = 0; sum2 = 0; for(i = 1; i < size; i++) { if(grid[(i * size) + size - 1] & filter) { sum1++; } if(grid[((size - 1) * size) + i] & filter) { sum2++; } } if(sum1 <= sum2) { retval = (sum1 * 16) + sum2; } else { retval = (sum2 * 16) + sum1; } return retval; } int micro_apply_bitmask(unsigned char *grid, int size) { int x, y; unsigned char p; int pattern, value[8]; int best_val, best_pattern; int bit; #ifndef _MSC_VER unsigned char mask[size * size]; unsigned char eval[size * size]; #else unsigned char* mask = (unsigned char *)_alloca((size * size) * sizeof(unsigned char)); unsigned char* eval = (unsigned char *)_alloca((size * size) * sizeof(unsigned char)); #endif /* Perform data masking */ for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { mask[(y * size) + x] = 0x00; if (!(grid[(y * size) + x] & 0xf0)) { if((y & 1) == 0) { mask[(y * size) + x] += 0x01; } if((((y / 2) + (x / 3)) & 1) == 0) { mask[(y * size) + x] += 0x02; } if(((((y * x) & 1) + ((y * x) % 3)) & 1) == 0) { mask[(y * size) + x] += 0x04; } if(((((y + x) & 1) + ((y * x) % 3)) & 1) == 0) { mask[(y * size) + x] += 0x08; } } } } for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { if(grid[(y * size) + x] & 0x01) { p = 0xff; } else { p = 0x00; } eval[(y * size) + x] = mask[(y * size) + x] ^ p; } } /* Evaluate result */ for(pattern = 0; pattern < 8; pattern++) { value[pattern] = micro_evaluate(eval, size, pattern); } best_pattern = 0; best_val = value[0]; for(pattern = 1; pattern < 4; pattern++) { if(value[pattern] > best_val) { best_pattern = pattern; best_val = value[pattern]; } } /* Apply mask */ for(x = 0; x < size; x++) { for(y = 0; y < size; y++) { bit = 0; switch(best_pattern) { case 0: if(mask[(y * size) + x] & 0x01) { bit = 1; } break; case 1: if(mask[(y * size) + x] & 0x02) { bit = 1; } break; case 2: if(mask[(y * size) + x] & 0x04) { bit = 1; } break; case 3: if(mask[(y * size) + x] & 0x08) { bit = 1; } break; } if(bit == 1) { if(grid[(y * size) + x] & 0x01) { grid[(y * size) + x] = 0x00; } else { grid[(y * size) + x] = 0x01; } } } } return best_pattern; } int microqr(struct zint_symbol *symbol, unsigned char source[], int length) { int i, j, glyph, size; char binary_stream[200]; char full_stream[200]; int utfdata[40]; int jisdata[40]; char mode[40]; int error_number, kanji_used = 0, alphanum_used = 0, byte_used = 0; int version_valid[4]; int binary_count[4]; int ecc_level, autoversion, version; int n_count, a_count, bitmask, format, format_full; #ifdef _MSC_VER unsigned char* grid; #endif if(length > 35) { strcpy(symbol->errtxt, "Input data too long"); return ERROR_TOO_LONG; } for(i = 0; i < 4; i++) { version_valid[i] = 1; } switch(symbol->input_mode) { case DATA_MODE: for(i = 0; i < length; i++) { jisdata[i] = (int)source[i]; } break; default: /* Convert Unicode input to Shift-JIS */ error_number = utf8toutf16(symbol, source, utfdata, &length); if(error_number != 0) { return error_number; } for(i = 0; i < length; i++) { if(utfdata[i] <= 0xff) { jisdata[i] = utfdata[i]; } else { j = 0; glyph = 0; do { if(sjis_lookup[j * 2] == utfdata[i]) { glyph = sjis_lookup[(j * 2) + 1]; } j++; } while ((j < 6843) && (glyph == 0)); if(glyph == 0) { strcpy(symbol->errtxt, "Invalid character in input data"); return ERROR_INVALID_DATA1; } jisdata[i] = glyph; } } break; } define_mode(mode, jisdata, length, 0); n_count = 0; a_count = 0; for(i = 0; i < length; i++) { if((jisdata[i] >= '0') && (jisdata[i] <= '9')) { n_count++; } if(in_alpha(jisdata[i])) { a_count++; } } if(a_count == length) { /* All data can be encoded in Alphanumeric mode */ for(i = 0; i < length; i++) { mode[i] = 'A'; } } if(n_count == length) { /* All data can be encoded in Numeric mode */ for(i = 0; i < length; i++) { mode[i] = 'N'; } } error_number = micro_qr_intermediate(binary_stream, jisdata, mode, length, &kanji_used, &alphanum_used, &byte_used); if(error_number != 0) { strcpy(symbol->errtxt, "Input data too long"); return error_number; } get_bitlength(binary_count, binary_stream); /* Eliminate possivle versions depending on type of content */ if(byte_used) { version_valid[0] = 0; version_valid[1] = 0; } if(alphanum_used) { version_valid[0] = 0; } if(kanji_used) { version_valid[0] = 0; version_valid[1] = 0; } /* Eliminate possible versions depending on length of binary data */ if(binary_count[0] > 20) { version_valid[0] = 0; } if(binary_count[1] > 40) { version_valid[1] = 0; } if(binary_count[2] > 84) { version_valid[2] = 0; } if(binary_count[3] > 128) { strcpy(symbol->errtxt, "Input data too long"); return ERROR_TOO_LONG; } /* Eliminate possible versions depending on error correction level specified */ ecc_level = LEVEL_L; if((symbol->option_1 >= 1) && (symbol->option_2 <= 4)) { ecc_level = symbol->option_1; } if(ecc_level == LEVEL_H) { strcpy(symbol->errtxt, "Error correction level H not available"); return ERROR_INVALID_OPTION; } if(ecc_level == LEVEL_Q) { version_valid[0] = 0; version_valid[1] = 0; version_valid[2] = 0; if(binary_count[3] > 80) { strcpy(symbol->errtxt, "Input data too long"); return ERROR_TOO_LONG; } } if(ecc_level == LEVEL_M) { version_valid[0] = 0; if(binary_count[1] > 32) { version_valid[1] = 0; } if(binary_count[2] > 68) { version_valid[2] = 0; } if(binary_count[3] > 112) { strcpy(symbol->errtxt, "Input data too long"); return ERROR_TOO_LONG; } } autoversion = 3; if(version_valid[2]) { autoversion = 2; } if(version_valid[1]) { autoversion = 1; } if(version_valid[0]) { autoversion = 0; } version = autoversion; /* Get version from user */ if((symbol->option_2 >= 1) && (symbol->option_2 <= 4)) { if(symbol->option_2 >= autoversion) { version = symbol->option_2; } } /* If there is enough unused space then increase the error correction level */ if(version == 3) { if(binary_count[3] <= 112) { ecc_level = LEVEL_M; } if(binary_count[3] <= 80) { ecc_level = LEVEL_Q; } } if(version == 2) { if(binary_count[2] <= 68) { ecc_level = LEVEL_M; } } if(version == 1) { if(binary_count[1] <= 32) { ecc_level = LEVEL_M; } } strcpy(full_stream, ""); microqr_expand_binary(binary_stream, full_stream, version); switch(version) { case 0: micro_qr_m1(full_stream); break; case 1: micro_qr_m2(full_stream, ecc_level); break; case 2: micro_qr_m3(full_stream, ecc_level); break; case 3: micro_qr_m4(full_stream, ecc_level); break; } size = micro_qr_sizes[version]; #ifndef _MSC_VER unsigned char grid[size * size]; #else grid = (unsigned char *)_alloca((size * size) * sizeof(unsigned char)); #endif for(i = 0; i < size; i++) { for(j = 0; j < size; j++) { grid[(i * size) + j] = 0; } } micro_setup_grid(grid, size); micro_populate_grid(grid, size, full_stream); bitmask = micro_apply_bitmask(grid, size); /* Add format data */ format = 0; switch(version) { case 1: switch(ecc_level) { case 1: format = 1; break; case 2: format = 2; break; } break; case 2: switch(ecc_level) { case 1: format = 3; break; case 2: format = 4; break; } break; case 3: switch(ecc_level) { case 1: format = 5; break; case 2: format = 6; break; case 3: format = 7; break; } break; } format_full = qr_annex_c1[(format << 2) + bitmask]; if(format_full & 0x4000) { grid[(8 * size) + 1] += 0x01; } if(format_full & 0x2000) { grid[(8 * size) + 2] += 0x01; } if(format_full & 0x1000) { grid[(8 * size) + 3] += 0x01; } if(format_full & 0x800) { grid[(8 * size) + 4] += 0x01; } if(format_full & 0x400) { grid[(8 * size) + 5] += 0x01; } if(format_full & 0x200) { grid[(8 * size) + 6] += 0x01; } if(format_full & 0x100) { grid[(8 * size) + 7] += 0x01; } if(format_full & 0x80) { grid[(8 * size) + 8] += 0x01; } if(format_full & 0x40) { grid[(7 * size) + 8] += 0x01; } if(format_full & 0x20) { grid[(6 * size) + 8] += 0x01; } if(format_full & 0x10) { grid[(5 * size) + 8] += 0x01; } if(format_full & 0x08) { grid[(4 * size) + 8] += 0x01; } if(format_full & 0x04) { grid[(3 * size) + 8] += 0x01; } if(format_full & 0x02) { grid[(2 * size) + 8] += 0x01; } if(format_full & 0x01) { grid[(1 * size) + 8] += 0x01; } symbol->width = size; symbol->rows = size; for(i = 0; i < size; i++) { for(j = 0; j < size; j++) { if(grid[(i * size) + j] & 0x01) { set_module(symbol, i, j); } } symbol->row_height[i] = 1; } return 0; }