mirror of
https://github.com/fralx/LimeReport.git
synced 2025-01-15 11:01:02 +03:00
2984 lines
85 KiB
C
2984 lines
85 KiB
C
/* qr.c Handles QR Code */
|
|
|
|
/*
|
|
libzint - the open source barcode library
|
|
Copyright (C) 2009 -2017 Robin Stuart <rstuart114@gmail.com>
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. Neither the name of the project nor the names of its contributors
|
|
may be used to endorse or promote products derived from this software
|
|
without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#ifdef _MSC_VER
|
|
#include <malloc.h>
|
|
#endif
|
|
#include "common.h"
|
|
#include <stdio.h>
|
|
#include "sjis.h"
|
|
#include "qr.h"
|
|
#include "reedsol.h"
|
|
#include <stdlib.h> /* abs */
|
|
#include <assert.h>
|
|
|
|
extern int utf_to_eci(const int eci, const unsigned char source[], unsigned char dest[], size_t *length); /* Convert Unicode to other encodings */
|
|
|
|
/* Returns true if input glyph is in the Alphanumeric set */
|
|
static int in_alpha(const int glyph) {
|
|
int retval = 0;
|
|
char cglyph = (char) glyph;
|
|
|
|
if ((cglyph >= '0') && (cglyph <= '9')) {
|
|
retval = 1;
|
|
}
|
|
if ((cglyph >= 'A') && (cglyph <= 'Z')) {
|
|
retval = 1;
|
|
}
|
|
switch (cglyph) {
|
|
case ' ':
|
|
case '$':
|
|
case '%':
|
|
case '*':
|
|
case '+':
|
|
case '-':
|
|
case '.':
|
|
case '/':
|
|
case ':':
|
|
retval = 1;
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void define_mode(char mode[],const int jisdata[], const size_t length,const int gs1) {
|
|
/* Values placed into mode[] are: K = Kanji, B = Binary, A = Alphanumeric, N = Numeric */
|
|
size_t i;
|
|
int mlen, j;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
if (jisdata[i] > 0xff) {
|
|
mode[i] = 'K';
|
|
} else {
|
|
mode[i] = 'B';
|
|
if (in_alpha(jisdata[i])) {
|
|
mode[i] = 'A';
|
|
}
|
|
if (gs1 && (jisdata[i] == '[')) {
|
|
mode[i] = 'A';
|
|
}
|
|
if ((jisdata[i] >= '0') && (jisdata[i] <= '9')) {
|
|
mode[i] = 'N';
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If less than 6 numeric digits together then don't use numeric mode */
|
|
for (i = 0; i < length; i++) {
|
|
if (mode[i] == 'N') {
|
|
if (((i != 0) && (mode[i - 1] != 'N')) || (i == 0)) {
|
|
mlen = 0;
|
|
while (((mlen + i) < length) && (mode[mlen + i] == 'N')) {
|
|
mlen++;
|
|
};
|
|
if (mlen < 6) {
|
|
for (j = 0; j < mlen; j++) {
|
|
mode[i + j] = 'A';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If less than 4 alphanumeric characters together then don't use alphanumeric mode */
|
|
for (i = 0; i < length; i++) {
|
|
if (mode[i] == 'A') {
|
|
if (((i != 0) && (mode[i - 1] != 'A')) || (i == 0)) {
|
|
mlen = 0;
|
|
while (((mlen + i) < length) && (mode[mlen + i] == 'A')) {
|
|
mlen++;
|
|
};
|
|
if (mlen < 6) {
|
|
for (j = 0; j < mlen; j++) {
|
|
mode[i + j] = 'B';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Choose from three numbers based on version */
|
|
static int tribus(const int version,const int a,const int b,const int c) {
|
|
int RetVal;
|
|
|
|
RetVal = c;
|
|
|
|
if (version < 10) {
|
|
RetVal = a;
|
|
}
|
|
|
|
if ((version >= 10) && (version <= 26)) {
|
|
RetVal = b;
|
|
}
|
|
|
|
return RetVal;
|
|
}
|
|
|
|
/* Convert input data to a binary stream and add padding */
|
|
static void qr_binary(int datastream[], const int version, const int target_binlen, const char mode[], const int jisdata[], const size_t length, const int gs1, const int eci, const int est_binlen,const int debug) {
|
|
int position = 0;
|
|
int short_data_block_length, i;
|
|
char data_block, padbits;
|
|
int current_binlen, current_bytes;
|
|
int toggle, percent;
|
|
|
|
#ifndef _MSC_VER
|
|
char binary[est_binlen + 12];
|
|
#else
|
|
char* binary = (char *) _alloca(est_binlen + 12);
|
|
#endif
|
|
strcpy(binary, "");
|
|
|
|
if (gs1) {
|
|
strcat(binary, "0101"); /* FNC1 */
|
|
}
|
|
|
|
if (eci != 3) {
|
|
strcat(binary, "0111"); /* ECI (Table 4) */
|
|
if (eci <= 127) {
|
|
bin_append(eci, 8, binary); /* 000000 to 000127 */
|
|
} else if (eci <= 16383) {
|
|
bin_append(0x8000 + eci, 16, binary); /* 000000 to 016383 */
|
|
} else {
|
|
bin_append(0xC00000 + eci, 24, binary); /* 000000 to 999999 */
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
for (i = 0; i < length; i++) {
|
|
printf("%c", mode[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
percent = 0;
|
|
|
|
do {
|
|
data_block = mode[position];
|
|
short_data_block_length = 0;
|
|
do {
|
|
short_data_block_length++;
|
|
} while (((short_data_block_length + position) < length)
|
|
&& (mode[position + short_data_block_length] == data_block));
|
|
|
|
switch (data_block) {
|
|
case 'K':
|
|
/* Kanji mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "1000");
|
|
|
|
/* Character count indicator */
|
|
bin_append(short_data_block_length, tribus(version, 8, 10, 12), binary);
|
|
|
|
if (debug) {
|
|
printf("Kanji block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
for (i = 0; i < short_data_block_length; i++) {
|
|
int jis = jisdata[position + i];
|
|
int prod;
|
|
|
|
if (jis >= 0x8140 && jis <= 0x9ffc)
|
|
jis -= 0x8140;
|
|
|
|
else if (jis >= 0xe040 && jis <= 0xebbf)
|
|
jis -= 0xc140;
|
|
|
|
prod = ((jis >> 8) * 0xc0) + (jis & 0xff);
|
|
|
|
bin_append(prod, 13, binary);
|
|
|
|
if (debug) {
|
|
printf("0x%4X ", prod);
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
case 'B':
|
|
/* Byte mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "0100");
|
|
|
|
/* Character count indicator */
|
|
bin_append(short_data_block_length, tribus(version, 8, 16, 16), binary);
|
|
|
|
if (debug) {
|
|
printf("Byte block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
for (i = 0; i < short_data_block_length; i++) {
|
|
int byte = jisdata[position + i];
|
|
|
|
if (gs1 && (byte == '[')) {
|
|
byte = 0x1d; /* FNC1 */
|
|
}
|
|
|
|
bin_append(byte, 8, binary);
|
|
|
|
if (debug) {
|
|
printf("0x%2X(%d) ", byte, byte);
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
case 'A':
|
|
/* Alphanumeric mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "0010");
|
|
|
|
/* Character count indicator */
|
|
bin_append(short_data_block_length, tribus(version, 9, 11, 13), binary);
|
|
|
|
if (debug) {
|
|
printf("Alpha block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
i = 0;
|
|
while (i < short_data_block_length) {
|
|
int count;
|
|
int first = 0, second = 0, prod;
|
|
|
|
if (percent == 0) {
|
|
if (gs1 && (jisdata[position + i] == '%')) {
|
|
first = posn(RHODIUM, '%');
|
|
second = posn(RHODIUM, '%');
|
|
count = 2;
|
|
prod = (first * 45) + second;
|
|
i++;
|
|
} else {
|
|
if (gs1 && (jisdata[position + i] == '[')) {
|
|
first = posn(RHODIUM, '%'); /* FNC1 */
|
|
} else {
|
|
first = posn(RHODIUM, (char) jisdata[position + i]);
|
|
}
|
|
count = 1;
|
|
i++;
|
|
prod = first;
|
|
|
|
if (i < short_data_block_length && mode[position + i] == 'A') {
|
|
if (gs1 && (jisdata[position + i] == '%')) {
|
|
second = posn(RHODIUM, '%');
|
|
count = 2;
|
|
prod = (first * 45) + second;
|
|
percent = 1;
|
|
} else {
|
|
if (gs1 && (jisdata[position + i] == '[')) {
|
|
second = posn(RHODIUM, '%'); /* FNC1 */
|
|
} else {
|
|
second = posn(RHODIUM, (char) jisdata[position + i]);
|
|
}
|
|
count = 2;
|
|
i++;
|
|
prod = (first * 45) + second;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
first = posn(RHODIUM, '%');
|
|
count = 1;
|
|
i++;
|
|
prod = first;
|
|
percent = 0;
|
|
|
|
if (i < short_data_block_length && mode[position + i] == 'A') {
|
|
if (gs1 && (jisdata[position + i] == '%')) {
|
|
second = posn(RHODIUM, '%');
|
|
count = 2;
|
|
prod = (first * 45) + second;
|
|
percent = 1;
|
|
} else {
|
|
if (gs1 && (jisdata[position + i] == '[')) {
|
|
second = posn(RHODIUM, '%'); /* FNC1 */
|
|
} else {
|
|
second = posn(RHODIUM, (char) jisdata[position + i]);
|
|
}
|
|
count = 2;
|
|
i++;
|
|
prod = (first * 45) + second;
|
|
}
|
|
}
|
|
}
|
|
|
|
bin_append(prod, 1 + (5 * count), binary);
|
|
|
|
if (debug) {
|
|
printf("0x%4X ", prod);
|
|
}
|
|
};
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
case 'N':
|
|
/* Numeric mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "0001");
|
|
|
|
/* Character count indicator */
|
|
bin_append(short_data_block_length, tribus(version, 10, 12, 14), binary);
|
|
|
|
if (debug) {
|
|
printf("Number block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
i = 0;
|
|
while (i < short_data_block_length) {
|
|
int count;
|
|
int first = 0, second = 0, third = 0, prod;
|
|
|
|
first = posn(NEON, (char) jisdata[position + i]);
|
|
count = 1;
|
|
prod = first;
|
|
|
|
if (i + 1 < short_data_block_length && mode[position + i + 1] == 'N') {
|
|
second = posn(NEON, (char) jisdata[position + i + 1]);
|
|
count = 2;
|
|
prod = (prod * 10) + second;
|
|
|
|
if (i + 2 < short_data_block_length && mode[position + i + 2] == 'N') {
|
|
third = posn(NEON, (char) jisdata[position + i + 2]);
|
|
count = 3;
|
|
prod = (prod * 10) + third;
|
|
}
|
|
}
|
|
|
|
bin_append(prod, 1 + (3 * count), binary);
|
|
|
|
if (debug) {
|
|
printf("0x%4X (%d)", prod, prod);
|
|
}
|
|
|
|
i += count;
|
|
};
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
position += short_data_block_length;
|
|
} while (position < length);
|
|
|
|
/* Terminator */
|
|
strcat(binary, "0000");
|
|
|
|
current_binlen = (int)strlen(binary);
|
|
padbits = 8 - (current_binlen % 8);
|
|
if (padbits == 8) {
|
|
padbits = 0;
|
|
}
|
|
current_bytes = (current_binlen + padbits) / 8;
|
|
|
|
/* Padding bits */
|
|
for (i = 0; i < padbits; i++) {
|
|
strcat(binary, "0");
|
|
}
|
|
|
|
/* Put data into 8-bit codewords */
|
|
for (i = 0; i < current_bytes; i++) {
|
|
int p;
|
|
datastream[i] = 0x00;
|
|
for (p = 0; p < 8; p++) {
|
|
if (binary[i * 8 + p] == '1') {
|
|
datastream[i] += (0x80 >> p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add pad codewords */
|
|
toggle = 0;
|
|
for (i = current_bytes; i < target_binlen; i++) {
|
|
if (toggle == 0) {
|
|
datastream[i] = 0xec;
|
|
toggle = 1;
|
|
} else {
|
|
datastream[i] = 0x11;
|
|
toggle = 0;
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
printf("Resulting codewords:\n\t");
|
|
for (i = 0; i < target_binlen; i++) {
|
|
printf("0x%2X ", datastream[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
/* Split data into blocks, add error correction and then interleave the blocks and error correction data */
|
|
static void add_ecc(int fullstream[],const int datastream[],const int version,const int data_cw,const int blocks) {
|
|
int ecc_cw = qr_total_codewords[version - 1] - data_cw;
|
|
int short_data_block_length = data_cw / blocks;
|
|
int qty_long_blocks = data_cw % blocks;
|
|
int qty_short_blocks = blocks - qty_long_blocks;
|
|
int ecc_block_length = ecc_cw / blocks;
|
|
int i, j, length_this_block, posn, debug = 0;
|
|
|
|
|
|
#ifndef _MSC_VER
|
|
unsigned char data_block[short_data_block_length + 2];
|
|
unsigned char ecc_block[ecc_block_length + 2];
|
|
int interleaved_data[data_cw + 2];
|
|
int interleaved_ecc[ecc_cw + 2];
|
|
#else
|
|
unsigned char* data_block = (unsigned char *) _alloca(short_data_block_length + 2);
|
|
unsigned char* ecc_block = (unsigned char *) _alloca(ecc_block_length + 2);
|
|
int* interleaved_data = (int *) _alloca((data_cw + 2) * sizeof (int));
|
|
int* interleaved_ecc = (int *) _alloca((ecc_cw + 2) * sizeof (int));
|
|
#endif
|
|
|
|
posn = 0;
|
|
|
|
for (i = 0; i < blocks; i++) {
|
|
if (i < qty_short_blocks) {
|
|
length_this_block = short_data_block_length;
|
|
} else {
|
|
length_this_block = short_data_block_length + 1;
|
|
}
|
|
|
|
for (j = 0; j < ecc_block_length; j++) {
|
|
ecc_block[j] = 0;
|
|
}
|
|
|
|
for (j = 0; j < length_this_block; j++) {
|
|
data_block[j] = (unsigned char) datastream[posn + j];
|
|
}
|
|
|
|
rs_init_gf(0x11d);
|
|
rs_init_code(ecc_block_length, 0);
|
|
rs_encode(length_this_block, data_block, ecc_block);
|
|
rs_free();
|
|
|
|
if (debug) {
|
|
printf("Block %d: ", i + 1);
|
|
for (j = 0; j < length_this_block; j++) {
|
|
printf("%2X ", data_block[j]);
|
|
}
|
|
if (i < qty_short_blocks) {
|
|
printf(" ");
|
|
}
|
|
printf(" // ");
|
|
for (j = 0; j < ecc_block_length; j++) {
|
|
printf("%2X ", ecc_block[ecc_block_length - j - 1]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
for (j = 0; j < short_data_block_length; j++) {
|
|
interleaved_data[(j * blocks) + i] = (int) data_block[j];
|
|
}
|
|
|
|
if (i >= qty_short_blocks) {
|
|
interleaved_data[(short_data_block_length * blocks) + (i - qty_short_blocks)] = (int) data_block[short_data_block_length];
|
|
}
|
|
|
|
for (j = 0; j < ecc_block_length; j++) {
|
|
interleaved_ecc[(j * blocks) + i] = (int) ecc_block[ecc_block_length - j - 1];
|
|
}
|
|
|
|
posn += length_this_block;
|
|
}
|
|
|
|
for (j = 0; j < data_cw; j++) {
|
|
fullstream[j] = interleaved_data[j];
|
|
}
|
|
for (j = 0; j < ecc_cw; j++) {
|
|
fullstream[j + data_cw] = interleaved_ecc[j];
|
|
}
|
|
|
|
if (debug) {
|
|
printf("\nData Stream: \n");
|
|
for (j = 0; j < (data_cw + ecc_cw); j++) {
|
|
printf("%2X ", fullstream[j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
static void place_finder(unsigned char grid[],const int size,const int x,const int y) {
|
|
int xp, yp;
|
|
char finder[] = {0x7F, 0x41, 0x5D, 0x5D, 0x5D, 0x41, 0x7F};
|
|
|
|
for (xp = 0; xp < 7; xp++) {
|
|
for (yp = 0; yp < 7; yp++) {
|
|
if (finder[yp] & 0x40 >> xp) {
|
|
grid[((yp + y) * size) + (xp + x)] = 0x11;
|
|
} else {
|
|
grid[((yp + y) * size) + (xp + x)] = 0x10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void place_align(unsigned char grid[],const int size,int x,int y) {
|
|
int xp, yp;
|
|
char alignment[] = {0x1F, 0x11, 0x15, 0x11, 0x1F};
|
|
|
|
x -= 2;
|
|
y -= 2; /* Input values represent centre of pattern */
|
|
|
|
for (xp = 0; xp < 5; xp++) {
|
|
for (yp = 0; yp < 5; yp++) {
|
|
if (alignment[yp] & 0x10 >> xp) {
|
|
grid[((yp + y) * size) + (xp + x)] = 0x11;
|
|
} else {
|
|
grid[((yp + y) * size) + (xp + x)] = 0x10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void setup_grid(unsigned char* grid,const int size,const int version) {
|
|
int i, toggle = 1;
|
|
int loopsize, x, y, xcoord, ycoord;
|
|
|
|
/* Add timing patterns */
|
|
for (i = 0; i < size; i++) {
|
|
if (toggle == 1) {
|
|
grid[(6 * size) + i] = 0x21;
|
|
grid[(i * size) + 6] = 0x21;
|
|
toggle = 0;
|
|
} else {
|
|
grid[(6 * size) + i] = 0x20;
|
|
grid[(i * size) + 6] = 0x20;
|
|
toggle = 1;
|
|
}
|
|
}
|
|
|
|
/* Add finder patterns */
|
|
place_finder(grid, size, 0, 0);
|
|
place_finder(grid, size, 0, size - 7);
|
|
place_finder(grid, size, size - 7, 0);
|
|
|
|
/* Add separators */
|
|
for (i = 0; i < 7; i++) {
|
|
grid[(7 * size) + i] = 0x10;
|
|
grid[(i * size) + 7] = 0x10;
|
|
grid[(7 * size) + (size - 1 - i)] = 0x10;
|
|
grid[(i * size) + (size - 8)] = 0x10;
|
|
grid[((size - 8) * size) + i] = 0x10;
|
|
grid[((size - 1 - i) * size) + 7] = 0x10;
|
|
}
|
|
grid[(7 * size) + 7] = 0x10;
|
|
grid[(7 * size) + (size - 8)] = 0x10;
|
|
grid[((size - 8) * size) + 7] = 0x10;
|
|
|
|
/* Add alignment patterns */
|
|
if (version != 1) {
|
|
/* Version 1 does not have alignment patterns */
|
|
|
|
loopsize = qr_align_loopsize[version - 1];
|
|
for (x = 0; x < loopsize; x++) {
|
|
for (y = 0; y < loopsize; y++) {
|
|
xcoord = qr_table_e1[((version - 2) * 7) + x];
|
|
ycoord = qr_table_e1[((version - 2) * 7) + y];
|
|
|
|
if (!(grid[(ycoord * size) + xcoord] & 0x10)) {
|
|
place_align(grid, size, xcoord, ycoord);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reserve space for format information */
|
|
for (i = 0; i < 8; i++) {
|
|
grid[(8 * size) + i] += 0x20;
|
|
grid[(i * size) + 8] += 0x20;
|
|
grid[(8 * size) + (size - 1 - i)] = 0x20;
|
|
grid[((size - 1 - i) * size) + 8] = 0x20;
|
|
}
|
|
grid[(8 * size) + 8] += 20;
|
|
grid[((size - 1 - 7) * size) + 8] = 0x21; /* Dark Module from Figure 25 */
|
|
|
|
/* Reserve space for version information */
|
|
if (version >= 7) {
|
|
for (i = 0; i < 6; i++) {
|
|
grid[((size - 9) * size) + i] = 0x20;
|
|
grid[((size - 10) * size) + i] = 0x20;
|
|
grid[((size - 11) * size) + i] = 0x20;
|
|
grid[(i * size) + (size - 9)] = 0x20;
|
|
grid[(i * size) + (size - 10)] = 0x20;
|
|
grid[(i * size) + (size - 11)] = 0x20;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cwbit(const int* datastream,const int i) {
|
|
int resultant = 0;
|
|
|
|
if (datastream[(i / 8)] & (0x80 >> (i % 8))) {
|
|
resultant = 1;
|
|
}
|
|
|
|
return resultant;
|
|
}
|
|
|
|
static void populate_grid(unsigned char* grid,const int size,const int* datastream,const int cw) {
|
|
int direction = 1; /* up */
|
|
int row = 0; /* right hand side */
|
|
|
|
int i, n, x, y;
|
|
|
|
n = cw * 8;
|
|
y = size - 1;
|
|
i = 0;
|
|
do {
|
|
x = (size - 2) - (row * 2);
|
|
if (x < 6)
|
|
x--; /* skip over vertical timing pattern */
|
|
|
|
if (!(grid[(y * size) + (x + 1)] & 0xf0)) {
|
|
if (cwbit(datastream, i)) {
|
|
grid[(y * size) + (x + 1)] = 0x01;
|
|
} else {
|
|
grid[(y * size) + (x + 1)] = 0x00;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (i < n) {
|
|
if (!(grid[(y * size) + x] & 0xf0)) {
|
|
if (cwbit(datastream, i)) {
|
|
grid[(y * size) + x] = 0x01;
|
|
} else {
|
|
grid[(y * size) + x] = 0x00;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
if (direction) {
|
|
y--;
|
|
} else {
|
|
y++;
|
|
}
|
|
if (y == -1) {
|
|
/* reached the top */
|
|
row++;
|
|
y = 0;
|
|
direction = 0;
|
|
}
|
|
if (y == size) {
|
|
/* reached the bottom */
|
|
row++;
|
|
y = size - 1;
|
|
direction = 1;
|
|
}
|
|
} while (i < n);
|
|
}
|
|
|
|
#ifdef ZINTLOG
|
|
|
|
int append_log(char log) {
|
|
FILE *file;
|
|
|
|
file = fopen("zintlog.txt", "a+");
|
|
fprintf(file, "%c", log);
|
|
fclose(file);
|
|
return 0;
|
|
}
|
|
|
|
int write_log(char log[]) {
|
|
FILE *file;
|
|
|
|
file = fopen("zintlog.txt", "a+");
|
|
fprintf(file, log); /*writes*/
|
|
fprintf(file, "\r\n"); /*writes*/
|
|
fclose(file);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int evaluate(unsigned char *eval,const int size,const int pattern) {
|
|
int x, y, block, weight;
|
|
int result = 0;
|
|
char state;
|
|
int p;
|
|
int dark_mods;
|
|
int percentage, k;
|
|
int a, b, afterCount, beforeCount;
|
|
#ifdef ZINTLOG
|
|
int result_b = 0;
|
|
char str[15];
|
|
#endif
|
|
|
|
#ifndef _MSC_VER
|
|
char local[size * size];
|
|
#else
|
|
char* local = (char *) _alloca((size * size) * sizeof (char));
|
|
#endif
|
|
|
|
|
|
#ifdef ZINTLOG
|
|
write_log("");
|
|
sprintf(str, "%d", pattern);
|
|
write_log(str);
|
|
#endif
|
|
|
|
/* all eight bitmask variants have been encoded in the 8 bits of the bytes
|
|
* that make up the grid array. select them for evaluation according to the
|
|
* desired pattern.*/
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
if ((eval[(y * size) + x] & (0x01 << pattern)) != 0) {
|
|
local[(y * size) + x] = '1';
|
|
} else {
|
|
local[(y * size) + x] = '0';
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ZINTLOG
|
|
//bitmask output
|
|
for (y = 0; y < size; y++) {
|
|
strcpy(str, "");
|
|
for (x = 0; x < size; x++) {
|
|
state = local[(y * size) + x];
|
|
append_log(state);
|
|
}
|
|
write_log("");
|
|
}
|
|
write_log("");
|
|
#endif
|
|
|
|
/* Test 1: Adjacent modules in row/column in same colour */
|
|
/* Vertical */
|
|
for (x = 0; x < size; x++) {
|
|
state = local[x];
|
|
block = 0;
|
|
for (y = 0; y < size; y++) {
|
|
if (local[(y * size) + x] == state) {
|
|
block++;
|
|
} else {
|
|
if (block > 5) {
|
|
result += (3 + (block - 5));
|
|
}
|
|
block = 0;
|
|
state = local[(y * size) + x];
|
|
}
|
|
}
|
|
if (block > 5) {
|
|
result += (3 + (block - 5));
|
|
}
|
|
}
|
|
|
|
/* Horizontal */
|
|
for (y = 0; y < size; y++) {
|
|
state = local[y * size];
|
|
block = 0;
|
|
for (x = 0; x < size; x++) {
|
|
if (local[(y * size) + x] == state) {
|
|
block++;
|
|
} else {
|
|
if (block > 5) {
|
|
result += (3 + (block - 5));
|
|
}
|
|
block = 0;
|
|
state = local[(y * size) + x];
|
|
}
|
|
}
|
|
if (block > 5) {
|
|
result += (3 + (block - 5));
|
|
}
|
|
}
|
|
|
|
#ifdef ZINTLOG
|
|
/* output Test 1 */
|
|
sprintf(str, "%d", result);
|
|
result_b = result;
|
|
write_log(str);
|
|
#endif
|
|
|
|
/* Test 2: Block of modules in same color */
|
|
for (x = 0; x < size - 1; x++) {
|
|
for (y = 0; y < size - 1; y++) {
|
|
if (((local[(y * size) + x] == local[((y + 1) * size) + x]) &&
|
|
(local[(y * size) + x] == local[(y * size) + (x + 1)])) &&
|
|
(local[(y * size) + x] == local[((y + 1) * size) + (x + 1)])) {
|
|
result += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ZINTLOG
|
|
/* output Test 2 */
|
|
sprintf(str, "%d", result - result_b);
|
|
result_b = result;
|
|
write_log(str);
|
|
#endif
|
|
|
|
/* Test 3: 1:1:3:1:1 ratio pattern in row/column */
|
|
/* Vertical */
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < (size - 7); y++) {
|
|
p = 0;
|
|
for (weight = 0; weight < 7; weight++) {
|
|
if (local[((y + weight) * size) + x] == '1') {
|
|
p += (0x40 >> weight);
|
|
}
|
|
}
|
|
if (p == 0x5d) {
|
|
/* Pattern found, check before and after */
|
|
beforeCount = 0;
|
|
for (b = (y - 4); b < y; b++) {
|
|
if (b < 0) {
|
|
beforeCount++;
|
|
} else {
|
|
if (local[(b * size) + x] == '0') {
|
|
beforeCount++;
|
|
} else {
|
|
beforeCount = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
afterCount = 0;
|
|
for (a = (y + 7); a <= (y + 10); a++) {
|
|
if (a >= size) {
|
|
afterCount++;
|
|
} else {
|
|
if (local[(a * size) + x] == '0') {
|
|
afterCount++;
|
|
} else {
|
|
afterCount = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((beforeCount == 4) || (afterCount == 4)) {
|
|
/* Pattern is preceeded or followed by light area
|
|
4 modules wide */
|
|
result += 40;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Horizontal */
|
|
for (y = 0; y < size; y++) {
|
|
for (x = 0; x < (size - 7); x++) {
|
|
p = 0;
|
|
for (weight = 0; weight < 7; weight++) {
|
|
if (local[(y * size) + x + weight] == '1') {
|
|
p += (0x40 >> weight);
|
|
}
|
|
}
|
|
if (p == 0x5d) {
|
|
/* Pattern found, check before and after */
|
|
beforeCount = 0;
|
|
for (b = (x - 4); b < x; b++) {
|
|
if (b < 0) {
|
|
beforeCount++;
|
|
} else {
|
|
if (local[(y * size) + b] == '0') {
|
|
beforeCount++;
|
|
} else {
|
|
beforeCount = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
afterCount = 0;
|
|
for (a = (x + 7); a <= (x + 10); a++) {
|
|
if (a >= size) {
|
|
afterCount++;
|
|
} else {
|
|
if (local[(y * size) + a] == '0') {
|
|
afterCount++;
|
|
} else {
|
|
afterCount = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((beforeCount == 4) || (afterCount == 4)) {
|
|
/* Pattern is preceeded or followed by light area
|
|
4 modules wide */
|
|
result += 40;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ZINTLOG
|
|
/* output Test 3 */
|
|
sprintf(str, "%d", result - result_b);
|
|
result_b = result;
|
|
write_log(str);
|
|
#endif
|
|
|
|
/* Test 4: Proportion of dark modules in entire symbol */
|
|
dark_mods = 0;
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
if (local[(y * size) + x] == '1') {
|
|
dark_mods++;
|
|
}
|
|
}
|
|
}
|
|
percentage = 100 * (dark_mods / (size * size));
|
|
if (percentage <= 50) {
|
|
k = ((100 - percentage) - 50) / 5;
|
|
} else {
|
|
k = (percentage - 50) / 5;
|
|
}
|
|
|
|
result += 10 * k;
|
|
|
|
#ifdef ZINTLOG
|
|
/* output Test 4+summary */
|
|
sprintf(str, "%d", result - result_b);
|
|
write_log(str);
|
|
write_log("==========");
|
|
sprintf(str, "%d", result);
|
|
write_log(str);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
static void add_format_info_eval(unsigned char *eval,const int size,const int ecc_level,const int pattern) {
|
|
/* Add format information to grid */
|
|
|
|
int format = pattern;
|
|
unsigned int seq;
|
|
int i;
|
|
|
|
switch (ecc_level) {
|
|
case LEVEL_L: format += 0x08;
|
|
break;
|
|
case LEVEL_Q: format += 0x18;
|
|
break;
|
|
case LEVEL_H: format += 0x10;
|
|
break;
|
|
}
|
|
|
|
seq = qr_annex_c[format];
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
eval[(i * size) + 8] = (seq >> i) & 0x01 ? (0x01 >> pattern) : 0x00;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
eval[(8 * size) + (size - i - 1)] = (seq >> i) & 0x01 ? (0x01 >> pattern) : 0x00;
|
|
}
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
eval[(8 * size) + (5 - i)] = (seq >> (i + 9)) & 0x01 ? (0x01 >> pattern) : 0x00;
|
|
}
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
eval[(((size - 7) + i) * size) + 8] = (seq >> (i + 8)) & 0x01 ? (0x01 >> pattern) : 0x00;
|
|
}
|
|
|
|
eval[(7 * size) + 8] = (seq >> 6) & 0x01 ? (0x01 >> pattern) : 0x00;
|
|
eval[(8 * size) + 8] = (seq >> 7) & 0x01 ? (0x01 >> pattern) : 0x00;
|
|
eval[(8 * size) + 7] = (seq >> 8) & 0x01 ? (0x01 >> pattern) : 0x00;
|
|
}
|
|
|
|
static int apply_bitmask(unsigned char *grid,const int size,const int ecc_level) {
|
|
int x, y;
|
|
unsigned char p;
|
|
int pattern, penalty[8];
|
|
int best_val, best_pattern;
|
|
|
|
#ifndef _MSC_VER
|
|
unsigned char mask[size * size];
|
|
unsigned char eval[size * size];
|
|
#else
|
|
unsigned char* mask = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
|
|
unsigned char* eval = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
|
|
#endif
|
|
|
|
/* Perform data masking */
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
mask[(y * size) + x] = 0x00;
|
|
|
|
// all eight bitmask variants are encoded in the 8 bits of the bytes that make up the mask array.
|
|
if (!(grid[(y * size) + x] & 0xf0)) { // exclude areas not to be masked.
|
|
if (((y + x) & 1) == 0) {
|
|
mask[(y * size) + x] += 0x01;
|
|
}
|
|
if ((y & 1) == 0) {
|
|
mask[(y * size) + x] += 0x02;
|
|
}
|
|
if ((x % 3) == 0) {
|
|
mask[(y * size) + x] += 0x04;
|
|
}
|
|
if (((y + x) % 3) == 0) {
|
|
mask[(y * size) + x] += 0x08;
|
|
}
|
|
if ((((y / 2) + (x / 3)) & 1) == 0) {
|
|
mask[(y * size) + x] += 0x10;
|
|
}
|
|
if ((((y * x) & 1) + ((y * x) % 3)) == 0) {
|
|
mask[(y * size) + x] += 0x20;
|
|
}
|
|
if (((((y * x) & 1) + ((y * x) % 3)) & 1) == 0) {
|
|
mask[(y * size) + x] += 0x40;
|
|
}
|
|
if (((((y + x) & 1) + ((y * x) % 3)) & 1) == 0) {
|
|
mask[(y * size) + x] += 0x80;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// apply data masks to grid, result in eval
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
if (grid[(y * size) + x] & 0x01) {
|
|
p = 0xff;
|
|
} else {
|
|
p = 0x00;
|
|
}
|
|
|
|
eval[(y * size) + x] = mask[(y * size) + x] ^ p;
|
|
}
|
|
}
|
|
|
|
|
|
/* Evaluate result */
|
|
for (pattern = 0; pattern < 8; pattern++) {
|
|
|
|
add_format_info_eval(eval, size, ecc_level, pattern);
|
|
|
|
penalty[pattern] = evaluate(eval, size, pattern);
|
|
}
|
|
|
|
best_pattern = 0;
|
|
best_val = penalty[0];
|
|
for (pattern = 1; pattern < 8; pattern++) {
|
|
if (penalty[pattern] < best_val) {
|
|
best_pattern = pattern;
|
|
best_val = penalty[pattern];
|
|
}
|
|
}
|
|
|
|
#ifdef ZINTLOG
|
|
char str[15];
|
|
sprintf(str, "%d", best_val);
|
|
write_log("choosed pattern:");
|
|
write_log(str);
|
|
#endif
|
|
|
|
/* Apply mask */
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
if (mask[(y * size) + x] & (0x01 << best_pattern)) {
|
|
if (grid[(y * size) + x] & 0x01) {
|
|
grid[(y * size) + x] = 0x00;
|
|
} else {
|
|
grid[(y * size) + x] = 0x01;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return best_pattern;
|
|
}
|
|
|
|
/* Add format information to grid */
|
|
static void add_format_info(unsigned char *grid,const int size,const int ecc_level,const int pattern) {
|
|
int format = pattern;
|
|
unsigned int seq;
|
|
int i;
|
|
|
|
switch (ecc_level) {
|
|
case LEVEL_L: format += 0x08;
|
|
break;
|
|
case LEVEL_Q: format += 0x18;
|
|
break;
|
|
case LEVEL_H: format += 0x10;
|
|
break;
|
|
}
|
|
|
|
seq = qr_annex_c[format];
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
grid[(i * size) + 8] += (seq >> i) & 0x01;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
grid[(8 * size) + (size - i - 1)] += (seq >> i) & 0x01;
|
|
}
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
grid[(8 * size) + (5 - i)] += (seq >> (i + 9)) & 0x01;
|
|
}
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
grid[(((size - 7) + i) * size) + 8] += (seq >> (i + 8)) & 0x01;
|
|
}
|
|
|
|
grid[(7 * size) + 8] += (seq >> 6) & 0x01;
|
|
grid[(8 * size) + 8] += (seq >> 7) & 0x01;
|
|
grid[(8 * size) + 7] += (seq >> 8) & 0x01;
|
|
}
|
|
|
|
/* Add version information */
|
|
static void add_version_info(unsigned char *grid,const int size,const int version) {
|
|
int i;
|
|
|
|
long int version_data = qr_annex_d[version - 7];
|
|
for (i = 0; i < 6; i++) {
|
|
grid[((size - 11) * size) + i] += (version_data >> (i * 3)) & 0x41;
|
|
grid[((size - 10) * size) + i] += (version_data >> ((i * 3) + 1)) & 0x41;
|
|
grid[((size - 9) * size) + i] += (version_data >> ((i * 3) + 2)) & 0x41;
|
|
grid[(i * size) + (size - 11)] += (version_data >> (i * 3)) & 0x41;
|
|
grid[(i * size) + (size - 10)] += (version_data >> ((i * 3) + 1)) & 0x41;
|
|
grid[(i * size) + (size - 9)] += (version_data >> ((i * 3) + 2)) & 0x41;
|
|
}
|
|
}
|
|
|
|
/* Implements a custom optimisation algorithm, more efficient than that
|
|
given in Annex J. */
|
|
static void applyOptimisation(const int version,char inputMode[], const size_t inputLength) {
|
|
|
|
|
|
int blockCount = 0, block;
|
|
int i, j;
|
|
char currentMode = ' '; // Null
|
|
int *blockLength;
|
|
char *blockMode;
|
|
|
|
for (i = 0; i < inputLength; i++) {
|
|
if (inputMode[i] != currentMode) {
|
|
currentMode = inputMode[i];
|
|
blockCount++;
|
|
}
|
|
}
|
|
|
|
blockLength = (int*) malloc(sizeof (int)*blockCount);
|
|
assert(blockLength);
|
|
if (!blockLength) return;
|
|
blockMode = (char*) malloc(sizeof (char)*blockCount);
|
|
assert(blockMode);
|
|
if (!blockMode) {
|
|
free(blockLength);
|
|
return;
|
|
}
|
|
|
|
j = -1;
|
|
currentMode = ' '; // Null
|
|
for (i = 0; i < inputLength; i++) {
|
|
if (inputMode[i] != currentMode) {
|
|
j++;
|
|
blockLength[j] = 1;
|
|
blockMode[j] = inputMode[i];
|
|
currentMode = inputMode[i];
|
|
} else {
|
|
blockLength[j]++;
|
|
}
|
|
}
|
|
|
|
if (blockCount > 1) {
|
|
// Search forward
|
|
for (i = 0; i <= (blockCount - 2); i++) {
|
|
if (blockMode[i] == 'B') {
|
|
switch (blockMode[i + 1]) {
|
|
case 'K':
|
|
if (blockLength[i + 1] < tribus(version, 4, 5, 6)) {
|
|
blockMode[i + 1] = 'B';
|
|
}
|
|
break;
|
|
case 'A':
|
|
if (blockLength[i + 1] < tribus(version, 7, 8, 9)) {
|
|
blockMode[i + 1] = 'B';
|
|
}
|
|
break;
|
|
case 'N':
|
|
if (blockLength[i + 1] < tribus(version, 3, 4, 5)) {
|
|
blockMode[i + 1] = 'B';
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((blockMode[i] == 'A')
|
|
&& (blockMode[i + 1] == 'N')) {
|
|
if (blockLength[i + 1] < tribus(version, 6, 8, 10)) {
|
|
blockMode[i + 1] = 'A';
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search backward
|
|
for (i = blockCount - 1; i > 0; i--) {
|
|
if (blockMode[i] == 'B') {
|
|
switch (blockMode[i - 1]) {
|
|
case 'K':
|
|
if (blockLength[i - 1] < tribus(version, 4, 5, 6)) {
|
|
blockMode[i - 1] = 'B';
|
|
}
|
|
break;
|
|
case 'A':
|
|
if (blockLength[i - 1] < tribus(version, 7, 8, 9)) {
|
|
blockMode[i - 1] = 'B';
|
|
}
|
|
break;
|
|
case 'N':
|
|
if (blockLength[i - 1] < tribus(version, 3, 4, 5)) {
|
|
blockMode[i - 1] = 'B';
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((blockMode[i] == 'A')
|
|
&& (blockMode[i - 1] == 'N')) {
|
|
if (blockLength[i - 1] < tribus(version, 6, 8, 10)) {
|
|
blockMode[i - 1] = 'A';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
j = 0;
|
|
for (block = 0; block < blockCount; block++) {
|
|
currentMode = blockMode[block];
|
|
for (i = 0; i < blockLength[block]; i++) {
|
|
inputMode[j] = currentMode;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
free(blockLength);
|
|
free(blockMode);
|
|
}
|
|
|
|
static size_t blockLength(const size_t start,const char inputMode[],const size_t inputLength) {
|
|
/* Find the length of the block starting from 'start' */
|
|
size_t i;
|
|
int count;
|
|
char mode = inputMode[start];
|
|
|
|
count = 0;
|
|
i = start;
|
|
|
|
do {
|
|
count++;
|
|
} while (((i + count) < inputLength) && (inputMode[i + count] == mode));
|
|
|
|
return count;
|
|
}
|
|
|
|
static int getBinaryLength(const int version,char inputMode[],const int inputData[],const size_t inputLength,const int gs1,const int eci) {
|
|
/* Calculate the actual bitlength of the proposed binary string */
|
|
size_t i;
|
|
char currentMode;
|
|
int j;
|
|
int count = 0;
|
|
|
|
applyOptimisation(version, inputMode, inputLength);
|
|
|
|
currentMode = ' '; // Null
|
|
|
|
if (gs1 == 1) {
|
|
count += 4;
|
|
}
|
|
|
|
if (eci != 3) {
|
|
count += 12;
|
|
}
|
|
|
|
for (i = 0; i < inputLength; i++) {
|
|
if (inputMode[i] != currentMode) {
|
|
count += 4;
|
|
switch (inputMode[i]) {
|
|
case 'K':
|
|
count += tribus(version, 8, 10, 12);
|
|
count += (blockLength(i, inputMode, inputLength) * 13);
|
|
break;
|
|
case 'B':
|
|
count += tribus(version, 8, 16, 16);
|
|
for (j = i; j < (i + blockLength(i, inputMode, inputLength)); j++) {
|
|
if (inputData[j] > 0xff) {
|
|
count += 16;
|
|
} else {
|
|
count += 8;
|
|
}
|
|
}
|
|
break;
|
|
case 'A':
|
|
count += tribus(version, 9, 11, 13);
|
|
switch (blockLength(i, inputMode, inputLength) % 2) {
|
|
case 0:
|
|
count += (blockLength(i, inputMode, inputLength) / 2) * 11;
|
|
break;
|
|
case 1:
|
|
count += ((blockLength(i, inputMode, inputLength) - 1) / 2) * 11;
|
|
count += 6;
|
|
break;
|
|
}
|
|
break;
|
|
case 'N':
|
|
count += tribus(version, 10, 12, 14);
|
|
switch (blockLength(i, inputMode, inputLength) % 3) {
|
|
case 0:
|
|
count += (blockLength(i, inputMode, inputLength) / 3) * 10;
|
|
break;
|
|
case 1:
|
|
count += ((blockLength(i, inputMode, inputLength) - 1) / 3) * 10;
|
|
count += 4;
|
|
break;
|
|
case 2:
|
|
count += ((blockLength(i, inputMode, inputLength) - 2) / 3) * 10;
|
|
count += 7;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
currentMode = inputMode[i];
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int qr_code(struct zint_symbol *symbol, const unsigned char source[], size_t length) {
|
|
int i, j, est_binlen;
|
|
int error_number,glyph;
|
|
int ecc_level, autosize, version, max_cw, target_binlen, blocks, size;
|
|
int bitmask, gs1;
|
|
int canShrink;
|
|
|
|
#ifndef _MSC_VER
|
|
int utfdata[length + 1];
|
|
int jisdata[length + 1];
|
|
char mode[length + 1];
|
|
#else
|
|
int* datastream;
|
|
int* fullstream;
|
|
unsigned char* grid;
|
|
int* utfdata = (int *) _alloca((length + 1) * sizeof (int));
|
|
int* jisdata = (int *) _alloca((length + 1) * sizeof (int));
|
|
char* mode = (char *) _alloca(length + 1);
|
|
#endif
|
|
|
|
gs1 = (symbol->input_mode == GS1_MODE);
|
|
|
|
if ((symbol->input_mode == DATA_MODE) || (symbol->eci != 3)) {
|
|
for (i = 0; i < length; i++) {
|
|
jisdata[i] = (int) source[i];
|
|
}
|
|
} else {
|
|
/* Convert Unicode input to Shift-JIS */
|
|
error_number = utf8toutf16(symbol, source, utfdata, &length);
|
|
if (error_number != 0) {
|
|
return error_number;
|
|
}
|
|
|
|
for (i = 0; i < length; i++) {
|
|
if (utfdata[i] <= 0xff) {
|
|
jisdata[i] = utfdata[i];
|
|
} else {
|
|
j = 0;
|
|
glyph = 0;
|
|
do {
|
|
if (sjis_lookup[j * 2] == utfdata[i]) {
|
|
glyph = sjis_lookup[(j * 2) + 1];
|
|
}
|
|
j++;
|
|
} while ((j < 6843) && (glyph == 0));
|
|
if (glyph == 0) {
|
|
strcpy(symbol->errtxt, "560: Invalid character in input data");
|
|
return ZINT_ERROR_INVALID_DATA;
|
|
}
|
|
jisdata[i] = glyph;
|
|
}
|
|
}
|
|
}
|
|
|
|
define_mode(mode, jisdata, length, gs1);
|
|
est_binlen = getBinaryLength(40, mode, jisdata, length, gs1, symbol->eci);
|
|
|
|
ecc_level = LEVEL_L;
|
|
max_cw = 2956;
|
|
if ((symbol->option_1 >= 1) && (symbol->option_1 <= 4)) {
|
|
switch (symbol->option_1) {
|
|
case 1: ecc_level = LEVEL_L;
|
|
max_cw = 2956;
|
|
break;
|
|
case 2: ecc_level = LEVEL_M;
|
|
max_cw = 2334;
|
|
break;
|
|
case 3: ecc_level = LEVEL_Q;
|
|
max_cw = 1666;
|
|
break;
|
|
case 4: ecc_level = LEVEL_H;
|
|
max_cw = 1276;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (est_binlen > (8 * max_cw)) {
|
|
strcpy(symbol->errtxt, "561: Input too long for selected error correction level");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
autosize = 40;
|
|
for (i = 39; i >= 0; i--) {
|
|
switch (ecc_level) {
|
|
case LEVEL_L:
|
|
if ((8 * qr_data_codewords_L[i]) >= est_binlen) {
|
|
autosize = i + 1;
|
|
}
|
|
break;
|
|
case LEVEL_M:
|
|
if ((8 * qr_data_codewords_M[i]) >= est_binlen) {
|
|
autosize = i + 1;
|
|
}
|
|
break;
|
|
case LEVEL_Q:
|
|
if ((8 * qr_data_codewords_Q[i]) >= est_binlen) {
|
|
autosize = i + 1;
|
|
}
|
|
break;
|
|
case LEVEL_H:
|
|
if ((8 * qr_data_codewords_H[i]) >= est_binlen) {
|
|
autosize = i + 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now see if the optimised binary will fit in a smaller symbol.
|
|
canShrink = 1;
|
|
|
|
do {
|
|
if (autosize == 1) {
|
|
canShrink = 0;
|
|
} else {
|
|
est_binlen = getBinaryLength(autosize - 1, mode, jisdata, length, gs1, symbol->eci);
|
|
|
|
switch (ecc_level) {
|
|
case LEVEL_L:
|
|
if ((8 * qr_data_codewords_L[autosize - 2]) < est_binlen) {
|
|
canShrink = 0;
|
|
}
|
|
break;
|
|
case LEVEL_M:
|
|
if ((8 * qr_data_codewords_M[autosize - 2]) < est_binlen) {
|
|
canShrink = 0;
|
|
}
|
|
break;
|
|
case LEVEL_Q:
|
|
if ((8 * qr_data_codewords_Q[autosize - 2]) < est_binlen) {
|
|
canShrink = 0;
|
|
}
|
|
break;
|
|
case LEVEL_H:
|
|
if ((8 * qr_data_codewords_H[autosize - 2]) < est_binlen) {
|
|
canShrink = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (canShrink == 1) {
|
|
// Optimisation worked - data will fit in a smaller symbol
|
|
autosize--;
|
|
} else {
|
|
// Data did not fit in the smaller symbol, revert to original size
|
|
est_binlen = getBinaryLength(autosize, mode, jisdata, length, gs1, symbol->eci);
|
|
}
|
|
}
|
|
} while (canShrink == 1);
|
|
|
|
version = autosize;
|
|
|
|
if ((symbol->option_2 >= 1) && (symbol->option_2 <= 40)) {
|
|
/* If the user has selected a larger symbol than the smallest available,
|
|
then use the size the user has selected, and re-optimise for this
|
|
symbol size.
|
|
*/
|
|
if (symbol->option_2 > version) {
|
|
version = symbol->option_2;
|
|
est_binlen = getBinaryLength(symbol->option_2, mode, jisdata, length, gs1, symbol->eci);
|
|
}
|
|
|
|
if (symbol->option_2 < version) {
|
|
strcpy(symbol->errtxt, "569: Input too long for selected symbol size");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
/* Ensure maxium error correction capacity */
|
|
if (est_binlen <= qr_data_codewords_M[version - 1]) {
|
|
ecc_level = LEVEL_M;
|
|
}
|
|
if (est_binlen <= qr_data_codewords_Q[version - 1]) {
|
|
ecc_level = LEVEL_Q;
|
|
}
|
|
if (est_binlen <= qr_data_codewords_H[version - 1]) {
|
|
ecc_level = LEVEL_H;
|
|
}
|
|
|
|
target_binlen = qr_data_codewords_L[version - 1];
|
|
blocks = qr_blocks_L[version - 1];
|
|
switch (ecc_level) {
|
|
case LEVEL_M: target_binlen = qr_data_codewords_M[version - 1];
|
|
blocks = qr_blocks_M[version - 1];
|
|
break;
|
|
case LEVEL_Q: target_binlen = qr_data_codewords_Q[version - 1];
|
|
blocks = qr_blocks_Q[version - 1];
|
|
break;
|
|
case LEVEL_H: target_binlen = qr_data_codewords_H[version - 1];
|
|
blocks = qr_blocks_H[version - 1];
|
|
break;
|
|
}
|
|
|
|
#ifndef _MSC_VER
|
|
int datastream[target_binlen + 1];
|
|
int fullstream[qr_total_codewords[version - 1] + 1];
|
|
#else
|
|
datastream = (int *) _alloca((target_binlen + 1) * sizeof (int));
|
|
fullstream = (int *) _alloca((qr_total_codewords[version - 1] + 1) * sizeof (int));
|
|
#endif
|
|
|
|
qr_binary(datastream, version, target_binlen, mode, jisdata, length, gs1, symbol->eci, est_binlen, symbol->debug);
|
|
add_ecc(fullstream, datastream, version, target_binlen, blocks);
|
|
|
|
size = qr_sizes[version - 1];
|
|
#ifndef _MSC_VER
|
|
unsigned char grid[size * size];
|
|
#else
|
|
grid = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
|
|
#endif
|
|
|
|
for (i = 0; i < size; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
grid[(i * size) + j] = 0;
|
|
}
|
|
}
|
|
|
|
setup_grid(grid, size, version);
|
|
populate_grid(grid, size, fullstream, qr_total_codewords[version - 1]);
|
|
|
|
if (version >= 7) {
|
|
add_version_info(grid, size, version);
|
|
}
|
|
|
|
bitmask = apply_bitmask(grid, size, ecc_level);
|
|
|
|
add_format_info(grid, size, ecc_level, bitmask);
|
|
|
|
|
|
|
|
symbol->width = size;
|
|
symbol->rows = size;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (grid[(i * size) + j] & 0x01) {
|
|
set_module(symbol, i, j);
|
|
}
|
|
}
|
|
symbol->row_height[i] = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* NOTE: From this point forward concerns Micro QR Code only */
|
|
|
|
static int micro_qr_intermediate(char binary[], const int jisdata[], const char mode[], const size_t length, int *kanji_used, int *alphanum_used, int *byte_used,const int debug) {
|
|
/* Convert input data to an "intermediate stage" where data is binary encoded but
|
|
control information is not */
|
|
int position = 0;
|
|
int short_data_block_length, i;
|
|
char data_block;
|
|
char buffer[2];
|
|
|
|
strcpy(binary, "");
|
|
|
|
if (debug) {
|
|
for (i = 0; i < length; i++) {
|
|
printf("%c", mode[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
do {
|
|
if (strlen(binary) > 128) {
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
data_block = mode[position];
|
|
short_data_block_length = 0;
|
|
do {
|
|
short_data_block_length++;
|
|
} while (((short_data_block_length + position) < length) && (mode[position + short_data_block_length] == data_block));
|
|
|
|
switch (data_block) {
|
|
case 'K':
|
|
/* Kanji mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "K");
|
|
*kanji_used = 1;
|
|
|
|
/* Character count indicator */
|
|
buffer[0] = short_data_block_length;
|
|
buffer[1] = '\0';
|
|
strcat(binary, buffer);
|
|
|
|
if (debug) {
|
|
printf("Kanji block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
for (i = 0; i < short_data_block_length; i++) {
|
|
int jis = jisdata[position + i];
|
|
int prod;
|
|
|
|
if (jis >= 0x8140 && jis <= 0x9ffc)
|
|
jis -= 0x8140;
|
|
|
|
else if (jis >= 0xe040 && jis <= 0xebbf)
|
|
jis -= 0xc140;
|
|
|
|
prod = ((jis >> 8) * 0xc0) + (jis & 0xff);
|
|
|
|
bin_append(prod, 13, binary);
|
|
|
|
if (debug) {
|
|
printf("0x%4X ", prod);
|
|
}
|
|
|
|
if (strlen(binary) > 128) {
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
case 'B':
|
|
/* Byte mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "B");
|
|
*byte_used = 1;
|
|
|
|
/* Character count indicator */
|
|
buffer[0] = short_data_block_length;
|
|
buffer[1] = '\0';
|
|
strcat(binary, buffer);
|
|
|
|
if (debug) {
|
|
printf("Byte block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
for (i = 0; i < short_data_block_length; i++) {
|
|
int byte = jisdata[position + i];
|
|
|
|
bin_append(byte, 8, binary);
|
|
|
|
if (debug) {
|
|
printf("0x%4X ", byte);
|
|
}
|
|
|
|
if (strlen(binary) > 128) {
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
case 'A':
|
|
/* Alphanumeric mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "A");
|
|
*alphanum_used = 1;
|
|
|
|
/* Character count indicator */
|
|
buffer[0] = short_data_block_length;
|
|
buffer[1] = '\0';
|
|
strcat(binary, buffer);
|
|
|
|
if (debug) {
|
|
printf("Alpha block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
i = 0;
|
|
while (i < short_data_block_length) {
|
|
int count;
|
|
int first = 0, second = 0, prod;
|
|
|
|
first = posn(RHODIUM, (char) jisdata[position + i]);
|
|
count = 1;
|
|
prod = first;
|
|
|
|
if (i + 1 < short_data_block_length && mode[position + i + 1] == 'A') {
|
|
second = posn(RHODIUM, (char) jisdata[position + i + 1]);
|
|
count = 2;
|
|
prod = (first * 45) + second;
|
|
}
|
|
|
|
bin_append(prod, 1 + (5 * count), binary);
|
|
|
|
if (debug) {
|
|
printf("0x%4X ", prod);
|
|
}
|
|
|
|
if (strlen(binary) > 128) {
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
i += 2;
|
|
};
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
case 'N':
|
|
/* Numeric mode */
|
|
/* Mode indicator */
|
|
strcat(binary, "N");
|
|
|
|
/* Character count indicator */
|
|
buffer[0] = short_data_block_length;
|
|
buffer[1] = '\0';
|
|
strcat(binary, buffer);
|
|
|
|
if (debug) {
|
|
printf("Number block (length %d)\n\t", short_data_block_length);
|
|
}
|
|
|
|
/* Character representation */
|
|
i = 0;
|
|
while (i < short_data_block_length) {
|
|
int count;
|
|
int first = 0, second = 0, third = 0, prod;
|
|
|
|
first = posn(NEON, (char) jisdata[position + i]);
|
|
count = 1;
|
|
prod = first;
|
|
|
|
if (i + 1 < short_data_block_length && mode[position + i + 1] == 'N') {
|
|
second = posn(NEON, (char) jisdata[position + i + 1]);
|
|
count = 2;
|
|
prod = (prod * 10) + second;
|
|
}
|
|
|
|
if (i + 2 < short_data_block_length && mode[position + i + 2] == 'N') {
|
|
third = posn(NEON, (char) jisdata[position + i + 2]);
|
|
count = 3;
|
|
prod = (prod * 10) + third;
|
|
}
|
|
|
|
bin_append(prod, 1 + (3 * count), binary);
|
|
|
|
if (debug) {
|
|
printf("0x%4X (%d)", prod, prod);
|
|
}
|
|
|
|
if (strlen(binary) > 128) {
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
i += 3;
|
|
};
|
|
|
|
if (debug) {
|
|
printf("\n");
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
position += short_data_block_length;
|
|
} while (position < length - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_bitlength(int count[],const char stream[]) {
|
|
size_t length;
|
|
int i;
|
|
|
|
length = strlen(stream);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
count[i] = 0;
|
|
}
|
|
|
|
i = 0;
|
|
do {
|
|
if ((stream[i] == '0') || (stream[i] == '1')) {
|
|
count[0]++;
|
|
count[1]++;
|
|
count[2]++;
|
|
count[3]++;
|
|
i++;
|
|
} else {
|
|
switch (stream[i]) {
|
|
case 'K':
|
|
count[2] += 5;
|
|
count[3] += 7;
|
|
i += 2;
|
|
break;
|
|
case 'B':
|
|
count[2] += 6;
|
|
count[3] += 8;
|
|
i += 2;
|
|
break;
|
|
case 'A':
|
|
count[1] += 4;
|
|
count[2] += 6;
|
|
count[3] += 8;
|
|
i += 2;
|
|
break;
|
|
case 'N':
|
|
count[0] += 3;
|
|
count[1] += 5;
|
|
count[2] += 7;
|
|
count[3] += 9;
|
|
i += 2;
|
|
break;
|
|
}
|
|
}
|
|
} while (i < length);
|
|
}
|
|
|
|
static void microqr_expand_binary(const char binary_stream[], char full_stream[],const int version) {
|
|
int i;
|
|
size_t length;
|
|
|
|
length = strlen(binary_stream);
|
|
|
|
i = 0;
|
|
do {
|
|
switch (binary_stream[i]) {
|
|
case '1': strcat(full_stream, "1");
|
|
i++;
|
|
break;
|
|
case '0': strcat(full_stream, "0");
|
|
i++;
|
|
break;
|
|
case 'N':
|
|
/* Numeric Mode */
|
|
/* Mode indicator */
|
|
switch (version) {
|
|
case 1: strcat(full_stream, "0");
|
|
break;
|
|
case 2: strcat(full_stream, "00");
|
|
break;
|
|
case 3: strcat(full_stream, "000");
|
|
break;
|
|
}
|
|
|
|
/* Character count indicator */
|
|
bin_append(binary_stream[i + 1], 3 + version, full_stream); /* version = 0..3 */
|
|
|
|
i += 2;
|
|
break;
|
|
case 'A':
|
|
/* Alphanumeric Mode */
|
|
/* Mode indicator */
|
|
switch (version) {
|
|
case 1: strcat(full_stream, "1");
|
|
break;
|
|
case 2: strcat(full_stream, "01");
|
|
break;
|
|
case 3: strcat(full_stream, "001");
|
|
break;
|
|
}
|
|
|
|
/* Character count indicator */
|
|
bin_append(binary_stream[i + 1], 2 + version, full_stream); /* version = 1..3 */
|
|
|
|
i += 2;
|
|
break;
|
|
case 'B':
|
|
/* Byte Mode */
|
|
/* Mode indicator */
|
|
switch (version) {
|
|
case 2: strcat(full_stream, "10");
|
|
break;
|
|
case 3: strcat(full_stream, "010");
|
|
break;
|
|
}
|
|
|
|
/* Character count indicator */
|
|
bin_append(binary_stream[i + 1], 2 + version, full_stream); /* version = 2..3 */
|
|
|
|
i += 2;
|
|
break;
|
|
case 'K':
|
|
/* Kanji Mode */
|
|
/* Mode indicator */
|
|
switch (version) {
|
|
case 2: strcat(full_stream, "11");
|
|
break;
|
|
case 3: strcat(full_stream, "011");
|
|
break;
|
|
}
|
|
|
|
/* Character count indicator */
|
|
bin_append(binary_stream[i + 1], 1 + version, full_stream); /* version = 2..3 */
|
|
|
|
i += 2;
|
|
break;
|
|
}
|
|
|
|
} while (i < length);
|
|
}
|
|
|
|
static void micro_qr_m1(char binary_data[]) {
|
|
int i, j, latch;
|
|
int bits_total, bits_left, remainder;
|
|
int data_codewords, ecc_codewords;
|
|
unsigned char data_blocks[4], ecc_blocks[3];
|
|
|
|
bits_total = 20;
|
|
latch = 0;
|
|
|
|
/* Add terminator */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left <= 3) {
|
|
for (i = 0; i < bits_left; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
latch = 1;
|
|
} else {
|
|
strcat(binary_data, "000");
|
|
}
|
|
|
|
if (latch == 0) {
|
|
/* Manage last (4-bit) block */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left <= 4) {
|
|
for (i = 0; i < bits_left; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
latch = 1;
|
|
}
|
|
}
|
|
|
|
if (latch == 0) {
|
|
/* Complete current byte */
|
|
remainder = 8 - (strlen(binary_data) % 8);
|
|
if (remainder == 8) {
|
|
remainder = 0;
|
|
}
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
|
|
/* Add padding */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left > 4) {
|
|
remainder = (bits_left - 4) / 8;
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, i & 1 ? "00010001" : "11101100");
|
|
}
|
|
}
|
|
bin_append(0, 4, binary_data);
|
|
}
|
|
|
|
data_codewords = 3;
|
|
ecc_codewords = 2;
|
|
|
|
/* Copy data into codewords */
|
|
for (i = 0; i < (data_codewords - 1); i++) {
|
|
data_blocks[i] = 0;
|
|
for (j = 0; j < 8; j++) {
|
|
if (binary_data[(i * 8) + j] == '1') {
|
|
data_blocks[i] += 0x80 >> j;
|
|
}
|
|
}
|
|
}
|
|
data_blocks[2] = 0;
|
|
for (j = 0; j < 4; j++) {
|
|
if (binary_data[16 + j] == '1') {
|
|
data_blocks[2] += 0x80 >> j;
|
|
}
|
|
}
|
|
|
|
/* Calculate Reed-Solomon error codewords */
|
|
rs_init_gf(0x11d);
|
|
rs_init_code(ecc_codewords, 0);
|
|
rs_encode(data_codewords, data_blocks, ecc_blocks);
|
|
rs_free();
|
|
|
|
/* Add Reed-Solomon codewords to binary data */
|
|
for (i = 0; i < ecc_codewords; i++) {
|
|
bin_append(ecc_blocks[ecc_codewords - i - 1], 8, binary_data);
|
|
}
|
|
}
|
|
|
|
static void micro_qr_m2(char binary_data[],const int ecc_mode) {
|
|
int i, j, latch;
|
|
int bits_total=0, bits_left, remainder;
|
|
int data_codewords=0, ecc_codewords=0;
|
|
unsigned char data_blocks[6], ecc_blocks[7];
|
|
|
|
latch = 0;
|
|
|
|
if (ecc_mode == LEVEL_L) {
|
|
bits_total = 40;
|
|
}
|
|
else if (ecc_mode == LEVEL_M) {
|
|
bits_total = 32;
|
|
}
|
|
else assert(0);
|
|
|
|
/* Add terminator */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left <= 5) {
|
|
for (i = 0; i < bits_left; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
latch = 1;
|
|
} else {
|
|
bin_append(0, 5, binary_data);
|
|
}
|
|
|
|
if (latch == 0) {
|
|
/* Complete current byte */
|
|
remainder = 8 - (strlen(binary_data) % 8);
|
|
if (remainder == 8) {
|
|
remainder = 0;
|
|
}
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
|
|
/* Add padding */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
remainder = bits_left / 8;
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, i & 1 ? "00010001" : "11101100");
|
|
}
|
|
}
|
|
|
|
if (ecc_mode == LEVEL_L) {
|
|
data_codewords = 5;
|
|
ecc_codewords = 5;
|
|
}
|
|
else if (ecc_mode == LEVEL_M) {
|
|
data_codewords = 4;
|
|
ecc_codewords = 6;
|
|
}
|
|
else assert(0);
|
|
|
|
/* Copy data into codewords */
|
|
for (i = 0; i < data_codewords; i++) {
|
|
data_blocks[i] = 0;
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (binary_data[(i * 8) + j] == '1') {
|
|
data_blocks[i] += 0x80 >> j;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate Reed-Solomon error codewords */
|
|
rs_init_gf(0x11d);
|
|
rs_init_code(ecc_codewords, 0);
|
|
rs_encode(data_codewords, data_blocks, ecc_blocks);
|
|
rs_free();
|
|
|
|
/* Add Reed-Solomon codewords to binary data */
|
|
for (i = 0; i < ecc_codewords; i++) {
|
|
bin_append(ecc_blocks[ecc_codewords - i - 1], 8, binary_data);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void micro_qr_m3(char binary_data[],const int ecc_mode) {
|
|
int i, j, latch;
|
|
int bits_total=0, bits_left, remainder;
|
|
int data_codewords=0, ecc_codewords=0;
|
|
unsigned char data_blocks[12], ecc_blocks[9];
|
|
|
|
latch = 0;
|
|
|
|
if (ecc_mode == LEVEL_L) {
|
|
bits_total = 84;
|
|
}
|
|
else if (ecc_mode == LEVEL_M) {
|
|
bits_total = 68;
|
|
}
|
|
else assert(0);
|
|
|
|
/* Add terminator */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left <= 7) {
|
|
for (i = 0; i < bits_left; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
latch = 1;
|
|
} else {
|
|
bin_append(0, 7, binary_data);
|
|
}
|
|
|
|
if (latch == 0) {
|
|
/* Manage last (4-bit) block */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left <= 4) {
|
|
for (i = 0; i < bits_left; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
latch = 1;
|
|
}
|
|
}
|
|
|
|
if (latch == 0) {
|
|
/* Complete current byte */
|
|
remainder = 8 - (strlen(binary_data) % 8);
|
|
if (remainder == 8) {
|
|
remainder = 0;
|
|
}
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
|
|
/* Add padding */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left > 4) {
|
|
remainder = (bits_left - 4) / 8;
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, i & 1 ? "00010001" : "11101100");
|
|
}
|
|
}
|
|
bin_append(0, 4, binary_data);
|
|
}
|
|
|
|
if (ecc_mode == LEVEL_L) {
|
|
data_codewords = 11;
|
|
ecc_codewords = 6;
|
|
}
|
|
else if (ecc_mode == LEVEL_M) {
|
|
data_codewords = 9;
|
|
ecc_codewords = 8;
|
|
}
|
|
else assert(0);
|
|
|
|
/* Copy data into codewords */
|
|
for (i = 0; i < (data_codewords - 1); i++) {
|
|
data_blocks[i] = 0;
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (binary_data[(i * 8) + j] == '1') {
|
|
data_blocks[i] += 0x80 >> j;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ecc_mode == LEVEL_L) {
|
|
data_blocks[10] = 0;
|
|
for (j = 0; j < 4; j++) {
|
|
if (binary_data[80 + j] == '1') {
|
|
data_blocks[10] += 0x80 >> j;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ecc_mode == LEVEL_M) {
|
|
data_blocks[8] = 0;
|
|
for (j = 0; j < 4; j++) {
|
|
if (binary_data[64 + j] == '1') {
|
|
data_blocks[8] += 0x80 >> j;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate Reed-Solomon error codewords */
|
|
rs_init_gf(0x11d);
|
|
rs_init_code(ecc_codewords, 0);
|
|
rs_encode(data_codewords, data_blocks, ecc_blocks);
|
|
rs_free();
|
|
|
|
/* Add Reed-Solomon codewords to binary data */
|
|
for (i = 0; i < ecc_codewords; i++) {
|
|
bin_append(ecc_blocks[ecc_codewords - i - 1], 8, binary_data);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void micro_qr_m4(char binary_data[],const int ecc_mode) {
|
|
int i, j, latch;
|
|
int bits_total=0, bits_left, remainder;
|
|
int data_codewords=0, ecc_codewords=0;
|
|
unsigned char data_blocks[17], ecc_blocks[15];
|
|
|
|
latch = 0;
|
|
|
|
if (ecc_mode == LEVEL_L) {
|
|
bits_total = 128;
|
|
}
|
|
else if (ecc_mode == LEVEL_M) {
|
|
bits_total = 112;
|
|
}
|
|
else if (ecc_mode == LEVEL_Q) {
|
|
bits_total = 80;
|
|
}
|
|
else assert(0);
|
|
|
|
/* Add terminator */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
if (bits_left <= 9) {
|
|
for (i = 0; i < bits_left; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
latch = 1;
|
|
} else {
|
|
bin_append(0, 9, binary_data);
|
|
}
|
|
|
|
if (latch == 0) {
|
|
/* Complete current byte */
|
|
remainder = 8 - (strlen(binary_data) % 8);
|
|
if (remainder == 8) {
|
|
remainder = 0;
|
|
}
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, "0");
|
|
}
|
|
|
|
/* Add padding */
|
|
bits_left = bits_total - (int)strlen(binary_data);
|
|
remainder = bits_left / 8;
|
|
for (i = 0; i < remainder; i++) {
|
|
strcat(binary_data, i & 1 ? "00010001" : "11101100");
|
|
}
|
|
}
|
|
|
|
if (ecc_mode == LEVEL_L) {
|
|
data_codewords = 16;
|
|
ecc_codewords = 8;
|
|
}
|
|
else if (ecc_mode == LEVEL_M) {
|
|
data_codewords = 14;
|
|
ecc_codewords = 10;
|
|
}
|
|
else if (ecc_mode == LEVEL_Q) {
|
|
data_codewords = 10;
|
|
ecc_codewords = 14;
|
|
}
|
|
else assert(0);
|
|
|
|
/* Copy data into codewords */
|
|
for (i = 0; i < data_codewords; i++) {
|
|
data_blocks[i] = 0;
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (binary_data[(i * 8) + j] == '1') {
|
|
data_blocks[i] += 0x80 >> j;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate Reed-Solomon error codewords */
|
|
rs_init_gf(0x11d);
|
|
rs_init_code(ecc_codewords, 0);
|
|
rs_encode(data_codewords, data_blocks, ecc_blocks);
|
|
rs_free();
|
|
|
|
/* Add Reed-Solomon codewords to binary data */
|
|
for (i = 0; i < ecc_codewords; i++) {
|
|
bin_append(ecc_blocks[ecc_codewords - i - 1], 8, binary_data);
|
|
}
|
|
}
|
|
|
|
static void micro_setup_grid(unsigned char* grid,const int size) {
|
|
int i, toggle = 1;
|
|
|
|
/* Add timing patterns */
|
|
for (i = 0; i < size; i++) {
|
|
if (toggle == 1) {
|
|
grid[i] = 0x21;
|
|
grid[(i * size)] = 0x21;
|
|
toggle = 0;
|
|
} else {
|
|
grid[i] = 0x20;
|
|
grid[(i * size)] = 0x20;
|
|
toggle = 1;
|
|
}
|
|
}
|
|
|
|
/* Add finder patterns */
|
|
place_finder(grid, size, 0, 0);
|
|
|
|
/* Add separators */
|
|
for (i = 0; i < 7; i++) {
|
|
grid[(7 * size) + i] = 0x10;
|
|
grid[(i * size) + 7] = 0x10;
|
|
}
|
|
grid[(7 * size) + 7] = 0x10;
|
|
|
|
|
|
/* Reserve space for format information */
|
|
for (i = 0; i < 8; i++) {
|
|
grid[(8 * size) + i] += 0x20;
|
|
grid[(i * size) + 8] += 0x20;
|
|
}
|
|
grid[(8 * size) + 8] += 20;
|
|
}
|
|
|
|
static void micro_populate_grid(unsigned char* grid,const int size,const char full_stream[]) {
|
|
int direction = 1; /* up */
|
|
int row = 0; /* right hand side */
|
|
size_t n;
|
|
int i,x, y;
|
|
|
|
n = strlen(full_stream);
|
|
y = size - 1;
|
|
i = 0;
|
|
do {
|
|
x = (size - 2) - (row * 2);
|
|
|
|
if (!(grid[(y * size) + (x + 1)] & 0xf0)) {
|
|
if (full_stream[i] == '1') {
|
|
grid[(y * size) + (x + 1)] = 0x01;
|
|
} else {
|
|
grid[(y * size) + (x + 1)] = 0x00;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (i < n) {
|
|
if (!(grid[(y * size) + x] & 0xf0)) {
|
|
if (full_stream[i] == '1') {
|
|
grid[(y * size) + x] = 0x01;
|
|
} else {
|
|
grid[(y * size) + x] = 0x00;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
if (direction) {
|
|
y--;
|
|
} else {
|
|
y++;
|
|
}
|
|
if (y == 0) {
|
|
/* reached the top */
|
|
row++;
|
|
y = 1;
|
|
direction = 0;
|
|
}
|
|
if (y == size) {
|
|
/* reached the bottom */
|
|
row++;
|
|
y = size - 1;
|
|
direction = 1;
|
|
}
|
|
} while (i < n);
|
|
}
|
|
|
|
static int micro_evaluate(const unsigned char *grid,const int size,const int pattern) {
|
|
int sum1, sum2, i, filter = 0, retval;
|
|
|
|
switch (pattern) {
|
|
case 0: filter = 0x01;
|
|
break;
|
|
case 1: filter = 0x02;
|
|
break;
|
|
case 2: filter = 0x04;
|
|
break;
|
|
case 3: filter = 0x08;
|
|
break;
|
|
}
|
|
|
|
sum1 = 0;
|
|
sum2 = 0;
|
|
for (i = 1; i < size; i++) {
|
|
if (grid[(i * size) + size - 1] & filter) {
|
|
sum1++;
|
|
}
|
|
if (grid[((size - 1) * size) + i] & filter) {
|
|
sum2++;
|
|
}
|
|
}
|
|
|
|
if (sum1 <= sum2) {
|
|
retval = (sum1 * 16) + sum2;
|
|
} else {
|
|
retval = (sum2 * 16) + sum1;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int micro_apply_bitmask(unsigned char *grid,const int size) {
|
|
int x, y;
|
|
unsigned char p;
|
|
int pattern, value[8];
|
|
int best_val, best_pattern;
|
|
|
|
#ifndef _MSC_VER
|
|
unsigned char mask[size * size];
|
|
unsigned char eval[size * size];
|
|
#else
|
|
unsigned char* mask = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
|
|
unsigned char* eval = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
|
|
#endif
|
|
|
|
/* Perform data masking */
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
mask[(y * size) + x] = 0x00;
|
|
|
|
if (!(grid[(y * size) + x] & 0xf0)) {
|
|
if ((y & 1) == 0) {
|
|
mask[(y * size) + x] += 0x01;
|
|
}
|
|
|
|
if ((((y / 2) + (x / 3)) & 1) == 0) {
|
|
mask[(y * size) + x] += 0x02;
|
|
}
|
|
|
|
if (((((y * x) & 1) + ((y * x) % 3)) & 1) == 0) {
|
|
mask[(y * size) + x] += 0x04;
|
|
}
|
|
|
|
if (((((y + x) & 1) + ((y * x) % 3)) & 1) == 0) {
|
|
mask[(y * size) + x] += 0x08;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
if (grid[(y * size) + x] & 0x01) {
|
|
p = 0xff;
|
|
} else {
|
|
p = 0x00;
|
|
}
|
|
|
|
eval[(y * size) + x] = mask[(y * size) + x] ^ p;
|
|
}
|
|
}
|
|
|
|
|
|
/* Evaluate result */
|
|
for (pattern = 0; pattern < 8; pattern++) {
|
|
value[pattern] = micro_evaluate(eval, size, pattern);
|
|
}
|
|
|
|
best_pattern = 0;
|
|
best_val = value[0];
|
|
for (pattern = 1; pattern < 4; pattern++) {
|
|
if (value[pattern] > best_val) {
|
|
best_pattern = pattern;
|
|
best_val = value[pattern];
|
|
}
|
|
}
|
|
|
|
/* Apply mask */
|
|
for (x = 0; x < size; x++) {
|
|
for (y = 0; y < size; y++) {
|
|
if (mask[(y * size) + x] & (0x01 << best_pattern)) {
|
|
if (grid[(y * size) + x] & 0x01) {
|
|
grid[(y * size) + x] = 0x00;
|
|
} else {
|
|
grid[(y * size) + x] = 0x01;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return best_pattern;
|
|
}
|
|
|
|
int microqr(struct zint_symbol *symbol, const unsigned char source[], size_t length) {
|
|
size_t i;
|
|
int j,size;
|
|
char binary_stream[200];
|
|
char full_stream[200];
|
|
int utfdata[40],glyph;
|
|
|
|
int jisdata[40];
|
|
char mode[40];
|
|
int error_number, kanji_used = 0, alphanum_used = 0, byte_used = 0;
|
|
int version_valid[4];
|
|
int binary_count[4];
|
|
int ecc_level, autoversion, version;
|
|
int n_count, a_count, bitmask, format, format_full;
|
|
#ifdef _MSC_VER
|
|
unsigned char* grid;
|
|
#endif
|
|
|
|
if (length > 35) {
|
|
strcpy(symbol->errtxt, "562: Input data too long");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
version_valid[i] = 1;
|
|
}
|
|
|
|
if (symbol->input_mode == DATA_MODE) {
|
|
for (i = 0; i < length; i++) {
|
|
jisdata[i] = (int) source[i];
|
|
}
|
|
} else {
|
|
/* Convert Unicode input to Shift-JIS */
|
|
error_number = utf8toutf16(symbol, source, utfdata, &length);
|
|
if (error_number != 0) {
|
|
return error_number;
|
|
}
|
|
|
|
for (i = 0; i < length; i++) {
|
|
if (utfdata[i] <= 0xff) {
|
|
jisdata[i] = utfdata[i];
|
|
} else {
|
|
j = 0;
|
|
glyph = 0;
|
|
do {
|
|
if (sjis_lookup[j * 2] == utfdata[i]) {
|
|
glyph = sjis_lookup[(j * 2) + 1];
|
|
}
|
|
j++;
|
|
} while ((j < 6843) && (glyph == 0));
|
|
if (glyph == 0) {
|
|
strcpy(symbol->errtxt, "563: Invalid character in input data");
|
|
return ZINT_ERROR_INVALID_DATA;
|
|
}
|
|
jisdata[i] = glyph;
|
|
}
|
|
}
|
|
}
|
|
|
|
define_mode(mode, jisdata, length, 0);
|
|
|
|
n_count = 0;
|
|
a_count = 0;
|
|
for (i = 0; i < length; i++) {
|
|
if ((jisdata[i] >= '0') && (jisdata[i] <= '9')) {
|
|
n_count++;
|
|
}
|
|
if (in_alpha(jisdata[i])) {
|
|
a_count++;
|
|
}
|
|
}
|
|
|
|
if (a_count == length) {
|
|
/* All data can be encoded in Alphanumeric mode */
|
|
for (i = 0; i < length; i++) {
|
|
mode[i] = 'A';
|
|
}
|
|
}
|
|
|
|
if (n_count == length) {
|
|
/* All data can be encoded in Numeric mode */
|
|
for (i = 0; i < length; i++) {
|
|
mode[i] = 'N';
|
|
}
|
|
}
|
|
|
|
error_number = micro_qr_intermediate(binary_stream, jisdata, mode, length, &kanji_used, &alphanum_used, &byte_used, symbol->debug);
|
|
if (error_number != 0) {
|
|
strcpy(symbol->errtxt, "564: Input data too long");
|
|
return error_number;
|
|
}
|
|
|
|
get_bitlength(binary_count, binary_stream);
|
|
|
|
/* Eliminate possivle versions depending on type of content */
|
|
if (byte_used) {
|
|
version_valid[0] = 0;
|
|
version_valid[1] = 0;
|
|
}
|
|
|
|
if (alphanum_used) {
|
|
version_valid[0] = 0;
|
|
}
|
|
|
|
if (kanji_used) {
|
|
version_valid[0] = 0;
|
|
version_valid[1] = 0;
|
|
}
|
|
|
|
/* Eliminate possible versions depending on length of binary data */
|
|
if (binary_count[0] > 20) {
|
|
version_valid[0] = 0;
|
|
}
|
|
if (binary_count[1] > 40) {
|
|
version_valid[1] = 0;
|
|
}
|
|
if (binary_count[2] > 84) {
|
|
version_valid[2] = 0;
|
|
}
|
|
if (binary_count[3] > 128) {
|
|
strcpy(symbol->errtxt, "565: Input data too long");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
/* Eliminate possible versions depending on error correction level specified */
|
|
ecc_level = LEVEL_L;
|
|
if ((symbol->option_1 >= 1) && (symbol->option_2 <= 4)) {
|
|
ecc_level = symbol->option_1;
|
|
}
|
|
|
|
if (ecc_level == LEVEL_H) {
|
|
strcpy(symbol->errtxt, "566: Error correction level H not available");
|
|
return ZINT_ERROR_INVALID_OPTION;
|
|
}
|
|
|
|
if (ecc_level == LEVEL_Q) {
|
|
version_valid[0] = 0;
|
|
version_valid[1] = 0;
|
|
version_valid[2] = 0;
|
|
if (binary_count[3] > 80) {
|
|
strcpy(symbol->errtxt, "567: Input data too long");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
if (ecc_level == LEVEL_M) {
|
|
version_valid[0] = 0;
|
|
if (binary_count[1] > 32) {
|
|
version_valid[1] = 0;
|
|
}
|
|
if (binary_count[2] > 68) {
|
|
version_valid[2] = 0;
|
|
}
|
|
if (binary_count[3] > 112) {
|
|
strcpy(symbol->errtxt, "568: Input data too long");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
autoversion = 3;
|
|
if (version_valid[2]) {
|
|
autoversion = 2;
|
|
}
|
|
if (version_valid[1]) {
|
|
autoversion = 1;
|
|
}
|
|
if (version_valid[0]) {
|
|
autoversion = 0;
|
|
}
|
|
|
|
version = autoversion;
|
|
/* Get version from user */
|
|
if ((symbol->option_2 >= 1) && (symbol->option_2 <= 4)) {
|
|
if (symbol->option_2 >= autoversion) {
|
|
version = symbol->option_2;
|
|
} else {
|
|
strcpy(symbol->errtxt, "570: Input too long for selected symbol size");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
}
|
|
|
|
/* If there is enough unused space then increase the error correction level */
|
|
if (version == 3) {
|
|
if (binary_count[3] <= 112) {
|
|
ecc_level = LEVEL_M;
|
|
}
|
|
if (binary_count[3] <= 80) {
|
|
ecc_level = LEVEL_Q;
|
|
}
|
|
}
|
|
|
|
if (version == 2) {
|
|
if (binary_count[2] <= 68) {
|
|
ecc_level = LEVEL_M;
|
|
}
|
|
}
|
|
|
|
if (version == 1) {
|
|
if (binary_count[1] <= 32) {
|
|
ecc_level = LEVEL_M;
|
|
}
|
|
}
|
|
|
|
strcpy(full_stream, "");
|
|
microqr_expand_binary(binary_stream, full_stream, version);
|
|
|
|
switch (version) {
|
|
case 0: micro_qr_m1(full_stream);
|
|
break;
|
|
case 1: micro_qr_m2(full_stream, ecc_level);
|
|
break;
|
|
case 2: micro_qr_m3(full_stream, ecc_level);
|
|
break;
|
|
case 3: micro_qr_m4(full_stream, ecc_level);
|
|
break;
|
|
}
|
|
|
|
size = micro_qr_sizes[version];
|
|
#ifndef _MSC_VER
|
|
unsigned char grid[size * size];
|
|
#else
|
|
grid = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
|
|
#endif
|
|
|
|
for (i = 0; i < size; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
grid[(i * size) + j] = 0;
|
|
}
|
|
}
|
|
|
|
micro_setup_grid(grid, size);
|
|
micro_populate_grid(grid, size, full_stream);
|
|
bitmask = micro_apply_bitmask(grid, size);
|
|
|
|
/* Add format data */
|
|
format = 0;
|
|
switch (version) {
|
|
case 1: switch (ecc_level) {
|
|
case 1: format = 1;
|
|
break;
|
|
case 2: format = 2;
|
|
break;
|
|
}
|
|
break;
|
|
case 2: switch (ecc_level) {
|
|
case 1: format = 3;
|
|
break;
|
|
case 2: format = 4;
|
|
break;
|
|
}
|
|
break;
|
|
case 3: switch (ecc_level) {
|
|
case 1: format = 5;
|
|
break;
|
|
case 2: format = 6;
|
|
break;
|
|
case 3: format = 7;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
format_full = qr_annex_c1[(format << 2) + bitmask];
|
|
|
|
if (format_full & 0x4000) {
|
|
grid[(8 * size) + 1] += 0x01;
|
|
}
|
|
if (format_full & 0x2000) {
|
|
grid[(8 * size) + 2] += 0x01;
|
|
}
|
|
if (format_full & 0x1000) {
|
|
grid[(8 * size) + 3] += 0x01;
|
|
}
|
|
if (format_full & 0x800) {
|
|
grid[(8 * size) + 4] += 0x01;
|
|
}
|
|
if (format_full & 0x400) {
|
|
grid[(8 * size) + 5] += 0x01;
|
|
}
|
|
if (format_full & 0x200) {
|
|
grid[(8 * size) + 6] += 0x01;
|
|
}
|
|
if (format_full & 0x100) {
|
|
grid[(8 * size) + 7] += 0x01;
|
|
}
|
|
if (format_full & 0x80) {
|
|
grid[(8 * size) + 8] += 0x01;
|
|
}
|
|
if (format_full & 0x40) {
|
|
grid[(7 * size) + 8] += 0x01;
|
|
}
|
|
if (format_full & 0x20) {
|
|
grid[(6 * size) + 8] += 0x01;
|
|
}
|
|
if (format_full & 0x10) {
|
|
grid[(5 * size) + 8] += 0x01;
|
|
}
|
|
if (format_full & 0x08) {
|
|
grid[(4 * size) + 8] += 0x01;
|
|
}
|
|
if (format_full & 0x04) {
|
|
grid[(3 * size) + 8] += 0x01;
|
|
}
|
|
if (format_full & 0x02) {
|
|
grid[(2 * size) + 8] += 0x01;
|
|
}
|
|
if (format_full & 0x01) {
|
|
grid[(1 * size) + 8] += 0x01;
|
|
}
|
|
|
|
symbol->width = size;
|
|
symbol->rows = size;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (grid[(i * size) + j] & 0x01) {
|
|
set_module(symbol, i, j);
|
|
}
|
|
}
|
|
symbol->row_height[i] = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* For UPNQR the symbol size and error correction capacity is fixed */
|
|
int upnqr(struct zint_symbol *symbol, const unsigned char source[], size_t length) {
|
|
int i, j, est_binlen;
|
|
int ecc_level, version, target_binlen, blocks, size;
|
|
int bitmask, error_number;
|
|
|
|
#ifndef _MSC_VER
|
|
int jisdata[length + 1];
|
|
char mode[length + 1];
|
|
#else
|
|
int* datastream;
|
|
int* fullstream;
|
|
unsigned char* grid;
|
|
int* jisdata = (int *) _alloca((length + 1) * sizeof (int));
|
|
char* mode = (char *) _alloca(length + 1);
|
|
#endif
|
|
|
|
#ifndef _MSC_VER
|
|
unsigned char preprocessed[length + 1];
|
|
#else
|
|
unsigned char* preprocessed = (unsigned char*) _alloca(length + 1);
|
|
#endif
|
|
|
|
switch(symbol->input_mode) {
|
|
case DATA_MODE:
|
|
/* Input is already in ISO-8859-2 format */
|
|
for (i = 0; i < length; i++) {
|
|
jisdata[i] = (int) source[i];
|
|
mode[i] = 'B';
|
|
}
|
|
break;
|
|
case GS1_MODE:
|
|
strcpy(symbol->errtxt, "571: UPNQR does not support GS-1 encoding");
|
|
return ZINT_ERROR_INVALID_OPTION;
|
|
break;
|
|
case UNICODE_MODE:
|
|
error_number = utf_to_eci(4, source, preprocessed, &length);
|
|
if (error_number != 0) {
|
|
strcpy(symbol->errtxt, "572: Invalid characters in input data");
|
|
return error_number;
|
|
}
|
|
for (i = 0; i < length; i++) {
|
|
jisdata[i] = (int) preprocessed[i];
|
|
mode[i] = 'B';
|
|
}
|
|
break;
|
|
}
|
|
|
|
symbol->eci = 4;
|
|
est_binlen = getBinaryLength(15, mode, jisdata, length, 0, symbol->eci);
|
|
|
|
ecc_level = LEVEL_M;
|
|
|
|
if (est_binlen > 3320) {
|
|
strcpy(symbol->errtxt, "573: Input too long for selected symbol");
|
|
return ZINT_ERROR_TOO_LONG;
|
|
}
|
|
|
|
version = 15; // 77 x 77
|
|
|
|
target_binlen = qr_data_codewords_M[version - 1];
|
|
blocks = qr_blocks_M[version - 1];
|
|
|
|
#ifndef _MSC_VER
|
|
int datastream[target_binlen + 1];
|
|
int fullstream[qr_total_codewords[version - 1] + 1];
|
|
#else
|
|
datastream = (int *) _alloca((target_binlen + 1) * sizeof (int));
|
|
fullstream = (int *) _alloca((qr_total_codewords[version - 1] + 1) * sizeof (int));
|
|
#endif
|
|
|
|
qr_binary(datastream, version, target_binlen, mode, jisdata, length, 0, symbol->eci, est_binlen, symbol->debug);
|
|
add_ecc(fullstream, datastream, version, target_binlen, blocks);
|
|
|
|
size = qr_sizes[version - 1];
|
|
#ifndef _MSC_VER
|
|
unsigned char grid[size * size];
|
|
#else
|
|
grid = (unsigned char *) _alloca((size * size) * sizeof (unsigned char));
|
|
#endif
|
|
|
|
for (i = 0; i < size; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
grid[(i * size) + j] = 0;
|
|
}
|
|
}
|
|
|
|
setup_grid(grid, size, version);
|
|
populate_grid(grid, size, fullstream, qr_total_codewords[version - 1]);
|
|
|
|
add_version_info(grid, size, version);
|
|
|
|
bitmask = apply_bitmask(grid, size, ecc_level);
|
|
|
|
add_format_info(grid, size, ecc_level, bitmask);
|
|
|
|
symbol->width = size;
|
|
symbol->rows = size;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (grid[(i * size) + j] & 0x01) {
|
|
set_module(symbol, i, j);
|
|
}
|
|
}
|
|
symbol->row_height[i] = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|