0
0
mirror of https://github.com/fralx/LimeReport.git synced 2025-01-26 16:11:04 +03:00
LimeReport/3rdparty/zint-2.4.4/backend/qr.c
2016-03-22 15:49:35 +03:00

2245 lines
56 KiB
C

/* qr.c Handles QR Code */
/*
libzint - the open source barcode library
Copyright (C) 2009 Robin Stuart <robin@zint.org.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#ifdef _MSC_VER
#include <malloc.h>
#endif
#include "common.h"
#include <stdio.h>
#include "sjis.h"
#include "qr.h"
#include "reedsol.h"
int in_alpha(int glyph) {
/* Returns true if input glyph is in the Alphanumeric set */
int retval = 0;
char cglyph = (char) glyph;
if((cglyph >= '0') && (cglyph <= '9')) {
retval = 1;
}
if((cglyph >= 'A') && (cglyph <= 'Z')) {
retval = 1;
}
switch (cglyph) {
case ' ':
case '$':
case '%':
case '*':
case '+':
case '-':
case '.':
case '/':
case ':':
retval = 1;
break;
}
return retval;
}
void define_mode(char mode[], int jisdata[], int length, int gs1)
{
/* Values placed into mode[] are: K = Kanji, B = Binary, A = Alphanumeric, N = Numeric */
int i, mlen, j;
for(i = 0; i < length; i++) {
if(jisdata[i] > 0xff) {
mode[i] = 'K';
} else {
mode[i] = 'B';
if(in_alpha(jisdata[i])) { mode[i] = 'A'; }
if(gs1 && (jisdata[i] == '[')) { mode[i] = 'A'; }
if((jisdata[i] >= '0') && (jisdata[i] <= '9')) { mode[i] = 'N'; }
}
}
/* If less than 6 numeric digits together then don't use numeric mode */
for(i = 0; i < length; i++) {
if(mode[i] == 'N') {
if(((i != 0) && (mode[i - 1] != 'N')) || (i == 0)) {
mlen = 0;
while (((mlen + i) < length) && (mode[mlen + i] == 'N')) {
mlen++;
};
if(mlen < 6) {
for(j = 0; j < mlen; j++) {
mode[i + j] = 'A';
}
}
}
}
}
/* If less than 4 alphanumeric characters together then don't use alphanumeric mode */
for(i = 0; i < length; i++) {
if(mode[i] == 'A') {
if(((i != 0) && (mode[i - 1] != 'A')) || (i == 0)) {
mlen = 0;
while (((mlen + i) < length) && (mode[mlen + i] == 'A')) {
mlen++;
};
if(mlen < 6) {
for(j = 0; j < mlen; j++) {
mode[i + j] = 'B';
}
}
}
}
}
}
int estimate_binary_length(char mode[], int length, int gs1)
{
/* Make an estimate (worst case scenario) of how long the binary string will be */
int i, count = 0;
char current = 0;
int a_count = 0;
int n_count = 0;
if(gs1) { count += 4; }
for(i = 0; i < length; i++) {
if(mode[i] != current) {
switch(mode[i]) {
case 'K': count += 12 + 4; current = 'K'; break;
case 'B': count += 16 + 4; current = 'B'; break;
case 'A': count += 13 + 4; current = 'A'; a_count = 0; break;
case 'N': count += 14 + 4; current = 'N'; n_count = 0; break;
}
}
switch(mode[i]) {
case 'K': count += 13; break;
case 'B': count += 8; break;
case 'A':
a_count++;
if((a_count & 1) == 0) {
count += 5; // 11 in total
a_count = 0;
}
else
count += 6;
break;
case 'N':
n_count++;
if((n_count % 3) == 0) {
count += 3; // 10 in total
n_count = 0;
}
else if ((n_count & 1) == 0)
count += 3; // 7 in total
else
count += 4;
break;
}
}
return count;
}
static void qr_bscan(char *binary, int data, int h)
{
for (; h; h>>=1) {
concat(binary, data & h ? "1" : "0");
}
}
void qr_binary(int datastream[], int version, int target_binlen, char mode[], int jisdata[], int length, int gs1, int est_binlen)
{
/* Convert input data to a binary stream and add padding */
int position = 0, debug = 0;
int short_data_block_length, i, scheme = 1;
char data_block, padbits;
int current_binlen, current_bytes;
int toggle, percent;
#ifndef _MSC_VER
char binary[est_binlen + 12];
#else
char* binary = (char *)_alloca(est_binlen + 12);
#endif
strcpy(binary, "");
if(gs1) {
concat(binary, "0101"); /* FNC1 */
}
if(version <= 9) {
scheme = 1;
} else if((version >= 10) && (version <= 26)) {
scheme = 2;
} else if(version >= 27) {
scheme = 3;
}
if(debug) {
for(i = 0; i < length; i++) {
printf("%c", mode[i]);
}
printf("\n");
}
percent = 0;
do {
data_block = mode[position];
short_data_block_length = 0;
do {
short_data_block_length++;
} while (((short_data_block_length + position) < length) && (mode[position + short_data_block_length] == data_block));
switch(data_block) {
case 'K':
/* Kanji mode */
/* Mode indicator */
concat(binary, "1000");
/* Character count indicator */
qr_bscan(binary, short_data_block_length, 0x20 << (scheme*2)); /* scheme = 1..3 */
if(debug) { printf("Kanji block (length %d)\n\t", short_data_block_length); }
/* Character representation */
for(i = 0; i < short_data_block_length; i++) {
int jis = jisdata[position + i];
int msb, lsb, prod;
if(jis > 0x9fff) { jis -= 0xc140; }
msb = (jis & 0xff00) >> 4;
lsb = (jis & 0xff);
prod = (msb * 0xc0) + lsb;
qr_bscan(binary, prod, 0x1000);
if(debug) { printf("0x%4X ", prod); }
}
if(debug) { printf("\n"); }
break;
case 'B':
/* Byte mode */
/* Mode indicator */
concat(binary, "0100");
/* Character count indicator */
qr_bscan(binary, short_data_block_length, scheme > 1 ? 0x8000 : 0x80); /* scheme = 1..3 */
if(debug) { printf("Byte block (length %d)\n\t", short_data_block_length); }
/* Character representation */
for(i = 0; i < short_data_block_length; i++) {
int byte = jisdata[position + i];
if(gs1 && (byte == '[')) {
byte = 0x1d; /* FNC1 */
}
qr_bscan(binary, byte, 0x80);
if(debug) { printf("0x%2X(%d) ", byte, byte); }
}
if(debug) { printf("\n"); }
break;
case 'A':
/* Alphanumeric mode */
/* Mode indicator */
concat(binary, "0010");
/* Character count indicator */
qr_bscan(binary, short_data_block_length, 0x40 << (2 * scheme)); /* scheme = 1..3 */
if(debug) { printf("Alpha block (length %d)\n\t", short_data_block_length); }
/* Character representation */
i = 0;
while ( i < short_data_block_length ) {
int count;
int first = 0, second = 0, prod;
if(percent == 0) {
if(gs1 && (jisdata[position + i] == '%')) {
first = posn(RHODIUM, '%');
second = posn(RHODIUM, '%');
count = 2;
prod = (first * 45) + second;
i++;
} else {
if(gs1 && (jisdata[position + i] == '[')) {
first = posn(RHODIUM, '%'); /* FNC1 */
} else {
first = posn(RHODIUM, (char) jisdata[position + i]);
}
count = 1;
i++;
prod = first;
if(mode[position + i] == 'A') {
if(gs1 && (jisdata[position + i] == '%')) {
second = posn(RHODIUM, '%');
count = 2;
prod = (first * 45) + second;
percent = 1;
} else {
if(gs1 && (jisdata[position + i] == '[')) {
second = posn(RHODIUM, '%'); /* FNC1 */
} else {
second = posn(RHODIUM, (char) jisdata[position + i]);
}
count = 2;
i++;
prod = (first * 45) + second;
}
}
}
} else {
first = posn(RHODIUM, '%');
count = 1;
i++;
prod = first;
percent = 0;
if(mode[position + i] == 'A') {
if(gs1 && (jisdata[position + i] == '%')) {
second = posn(RHODIUM, '%');
count = 2;
prod = (first * 45) + second;
percent = 1;
} else {
if(gs1 && (jisdata[position + i] == '[')) {
second = posn(RHODIUM, '%'); /* FNC1 */
} else {
second = posn(RHODIUM, (char) jisdata[position + i]);
}
count = 2;
i++;
prod = (first * 45) + second;
}
}
}
qr_bscan(binary, prod, count == 2 ? 0x400 : 0x20); /* count = 1..2 */
if(debug) { printf("0x%4X ", prod); }
};
if(debug) { printf("\n"); }
break;
case 'N':
/* Numeric mode */
/* Mode indicator */
concat(binary, "0001");
/* Character count indicator */
qr_bscan(binary, short_data_block_length, 0x80 << (2 * scheme)); /* scheme = 1..3 */
if(debug) { printf("Number block (length %d)\n\t", short_data_block_length); }
/* Character representation */
i = 0;
while ( i < short_data_block_length ) {
int count;
int first = 0, second = 0, third = 0, prod;
first = posn(NEON, (char) jisdata[position + i]);
count = 1;
prod = first;
if(mode[position + i + 1] == 'N') {
second = posn(NEON, (char) jisdata[position + i + 1]);
count = 2;
prod = (prod * 10) + second;
if(mode[position + i + 2] == 'N') {
third = posn(NEON, (char) jisdata[position + i + 2]);
count = 3;
prod = (prod * 10) + third;
}
}
qr_bscan(binary, prod, 1 << (3 * count)); /* count = 1..3 */
if(debug) { printf("0x%4X (%d)", prod, prod); }
i += count;
};
if(debug) { printf("\n"); }
break;
}
position += short_data_block_length;
} while (position < length) ;
/* Terminator */
concat(binary, "0000");
current_binlen = strlen(binary);
padbits = 8 - (current_binlen % 8);
if(padbits == 8) { padbits = 0; }
current_bytes = (current_binlen + padbits) / 8;
/* Padding bits */
for(i = 0; i < padbits; i++) {
concat(binary, "0");
}
/* Put data into 8-bit codewords */
for(i = 0; i < current_bytes; i++) {
datastream[i] = 0x00;
if(binary[i * 8] == '1') { datastream[i] += 0x80; }
if(binary[i * 8 + 1] == '1') { datastream[i] += 0x40; }
if(binary[i * 8 + 2] == '1') { datastream[i] += 0x20; }
if(binary[i * 8 + 3] == '1') { datastream[i] += 0x10; }
if(binary[i * 8 + 4] == '1') { datastream[i] += 0x08; }
if(binary[i * 8 + 5] == '1') { datastream[i] += 0x04; }
if(binary[i * 8 + 6] == '1') { datastream[i] += 0x02; }
if(binary[i * 8 + 7] == '1') { datastream[i] += 0x01; }
}
/* Add pad codewords */
toggle = 0;
for(i = current_bytes; i < target_binlen; i++) {
if(toggle == 0) {
datastream[i] = 0xec;
toggle = 1;
} else {
datastream[i] = 0x11;
toggle = 0;
}
}
if(debug) {
printf("Resulting codewords:\n\t");
for(i = 0; i < target_binlen; i++) {
printf("0x%2X ", datastream[i]);
}
printf("\n");
}
}
void add_ecc(int fullstream[], int datastream[], int version, int data_cw, int blocks)
{
/* Split data into blocks, add error correction and then interleave the blocks and error correction data */
int ecc_cw = qr_total_codewords[version - 1] - data_cw;
int short_data_block_length = data_cw / blocks;
int qty_long_blocks = data_cw % blocks;
int qty_short_blocks = blocks - qty_long_blocks;
int ecc_block_length = ecc_cw / blocks;
int i, j, length_this_block, posn, debug = 0;
#ifndef _MSC_VER
unsigned char data_block[short_data_block_length + 2];
unsigned char ecc_block[ecc_block_length + 2];
int interleaved_data[data_cw + 2];
int interleaved_ecc[ecc_cw + 2];
#else
unsigned char* data_block = (unsigned char *)_alloca(short_data_block_length + 2);
unsigned char* ecc_block = (unsigned char *)_alloca(ecc_block_length + 2);
int* interleaved_data = (int *)_alloca((data_cw + 2) * sizeof(int));
int* interleaved_ecc = (int *)_alloca((ecc_cw + 2) * sizeof(int));
#endif
posn = 0;
for(i = 0; i < blocks; i++) {
if(i < qty_short_blocks) { length_this_block = short_data_block_length; } else { length_this_block = short_data_block_length + 1; }
for(j = 0; j < ecc_block_length; j++) {
ecc_block[j] = 0;
}
for(j = 0; j < length_this_block; j++) {
data_block[j] = (unsigned char) datastream[posn + j];
}
rs_init_gf(0x11d);
rs_init_code(ecc_block_length, 0);
rs_encode(length_this_block, data_block, ecc_block);
rs_free();
if(debug) {
printf("Block %d: ", i + 1);
for(j = 0; j < length_this_block; j++) {
printf("%2X ", data_block[j]);
}
if(i < qty_short_blocks) {
printf(" ");
}
printf(" // ");
for(j = 0; j < ecc_block_length; j++) {
printf("%2X ", ecc_block[ecc_block_length - j - 1]);
}
printf("\n");
}
for(j = 0; j < short_data_block_length; j++) {
interleaved_data[(j * blocks) + i] = (int) data_block[j];
}
if(i >= qty_short_blocks){
interleaved_data[(short_data_block_length * blocks) + (i - qty_short_blocks)] = (int) data_block[short_data_block_length];
}
for(j = 0; j < ecc_block_length; j++) {
interleaved_ecc[(j * blocks) + i] = (int) ecc_block[ecc_block_length - j - 1];
}
posn += length_this_block;
}
for(j = 0; j < data_cw; j++) {
fullstream[j] = interleaved_data[j];
}
for(j = 0; j < ecc_cw; j++) {
fullstream[j + data_cw] = interleaved_ecc[j];
}
if(debug) {
printf("\nData Stream: \n");
for(j = 0; j < (data_cw + ecc_cw); j++) {
printf("%2X ", fullstream[j]);
}
printf("\n");
}
}
void place_finder(unsigned char grid[], int size, int x, int y)
{
int xp, yp;
int finder[] = {
1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 1,
1, 0, 1, 1, 1, 0, 1,
1, 0, 1, 1, 1, 0, 1,
1, 0, 1, 1, 1, 0, 1,
1, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1
};
for(xp = 0; xp < 7; xp++) {
for(yp = 0; yp < 7; yp++) {
if (finder[xp + (7 * yp)] == 1) {
grid[((yp + y) * size) + (xp + x)] = 0x11;
} else {
grid[((yp + y) * size) + (xp + x)] = 0x10;
}
}
}
}
void place_align(unsigned char grid[], int size, int x, int y)
{
int xp, yp;
int alignment[] = {
1, 1, 1, 1, 1,
1, 0, 0, 0, 1,
1, 0, 1, 0, 1,
1, 0, 0, 0, 1,
1, 1, 1, 1, 1
};
x -= 2;
y -= 2; /* Input values represent centre of pattern */
for(xp = 0; xp < 5; xp++) {
for(yp = 0; yp < 5; yp++) {
if (alignment[xp + (5 * yp)] == 1) {
grid[((yp + y) * size) + (xp + x)] = 0x11;
} else {
grid[((yp + y) * size) + (xp + x)] = 0x10;
}
}
}
}
void setup_grid(unsigned char* grid, int size, int version)
{
int i, toggle = 1;
int loopsize, x, y, xcoord, ycoord;
/* Add timing patterns */
for(i = 0; i < size; i++) {
if(toggle == 1) {
grid[(6 * size) + i] = 0x21;
grid[(i * size) + 6] = 0x21;
toggle = 0;
} else {
grid[(6 * size) + i] = 0x20;
grid[(i * size) + 6] = 0x20;
toggle = 1;
}
}
/* Add finder patterns */
place_finder(grid, size, 0, 0);
place_finder(grid, size, 0, size - 7);
place_finder(grid, size, size - 7, 0);
/* Add separators */
for(i = 0; i < 7; i++) {
grid[(7 * size) + i] = 0x10;
grid[(i * size) + 7] = 0x10;
grid[(7 * size) + (size - 1 - i)] = 0x10;
grid[(i * size) + (size - 8)] = 0x10;
grid[((size - 8) * size) + i] = 0x10;
grid[((size - 1 - i) * size) + 7] = 0x10;
}
grid[(7 * size) + 7] = 0x10;
grid[(7 * size) + (size - 8)] = 0x10;
grid[((size - 8) * size) + 7] = 0x10;
/* Add alignment patterns */
if(version != 1) {
/* Version 1 does not have alignment patterns */
loopsize = qr_align_loopsize[version - 1];
for(x = 0; x < loopsize; x++) {
for(y = 0; y < loopsize; y++) {
xcoord = qr_table_e1[((version - 2) * 7) + x];
ycoord = qr_table_e1[((version - 2) * 7) + y];
if(!(grid[(ycoord * size) + xcoord] & 0x10)) {
place_align(grid, size, xcoord, ycoord);
}
}
}
}
/* Reserve space for format information */
for(i = 0; i < 8; i++) {
grid[(8 * size) + i] += 0x20;
grid[(i * size) + 8] += 0x20;
grid[(8 * size) + (size - 1 - i)] = 0x20;
grid[((size - 1 - i) * size) + 8] = 0x20;
}
grid[(8 * size) + 8] += 20;
grid[((size - 1 - 7) * size) + 8] = 0x21; /* Dark Module from Figure 25 */
/* Reserve space for version information */
if(version >= 7) {
for(i = 0; i < 6; i++) {
grid[((size - 9) * size) + i] = 0x20;
grid[((size - 10) * size) + i] = 0x20;
grid[((size - 11) * size) + i] = 0x20;
grid[(i * size) + (size - 9)] = 0x20;
grid[(i * size) + (size - 10)] = 0x20;
grid[(i * size) + (size - 11)] = 0x20;
}
}
}
int cwbit(int* datastream, int i) {
int word = i / 8;
int bit = i % 8;
int resultant = 0;
switch(bit) {
case 0: if(datastream[word] & 0x80) { resultant = 1; } else { resultant = 0; } break;
case 1: if(datastream[word] & 0x40) { resultant = 1; } else { resultant = 0; } break;
case 2: if(datastream[word] & 0x20) { resultant = 1; } else { resultant = 0; } break;
case 3: if(datastream[word] & 0x10) { resultant = 1; } else { resultant = 0; } break;
case 4: if(datastream[word] & 0x08) { resultant = 1; } else { resultant = 0; } break;
case 5: if(datastream[word] & 0x04) { resultant = 1; } else { resultant = 0; } break;
case 6: if(datastream[word] & 0x02) { resultant = 1; } else { resultant = 0; } break;
case 7: if(datastream[word] & 0x01) { resultant = 1; } else { resultant = 0; } break;
}
return resultant;
}
void populate_grid(unsigned char* grid, int size, int* datastream, int cw)
{
int direction = 1; /* up */
int row = 0; /* right hand side */
int i, n, x, y;
n = cw * 8;
y = size - 1;
i = 0;
do {
x = (size - 2) - (row * 2);
if(x < 6)
x--; /* skip over vertical timing pattern */
if(!(grid[(y * size) + (x + 1)] & 0xf0)) {
if (cwbit(datastream, i)) {
grid[(y * size) + (x + 1)] = 0x01;
} else {
grid[(y * size) + (x + 1)] = 0x00;
}
i++;
}
if(i < n) {
if(!(grid[(y * size) + x] & 0xf0)) {
if (cwbit(datastream, i)) {
grid[(y * size) + x] = 0x01;
} else {
grid[(y * size) + x] = 0x00;
}
i++;
}
}
if(direction) { y--; } else { y++; }
if(y == -1) {
/* reached the top */
row++;
y = 0;
direction = 0;
}
if(y == size) {
/* reached the bottom */
row++;
y = size - 1;
direction = 1;
}
} while (i < n);
}
int evaluate(unsigned char *grid, int size, int pattern)
{
int x, y, block;
int result = 0;
char state;
int p;
int dark_mods;
int percentage, k;
#ifndef _MSC_VER
char local[size * size];
#else
char* local = (char *)_alloca((size * size) * sizeof(char));
#endif
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
switch(pattern) {
case 0: if (grid[(y * size) + x] & 0x01) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
case 1: if (grid[(y * size) + x] & 0x02) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
case 2: if (grid[(y * size) + x] & 0x04) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
case 3: if (grid[(y * size) + x] & 0x08) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
case 4: if (grid[(y * size) + x] & 0x10) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
case 5: if (grid[(y * size) + x] & 0x20) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
case 6: if (grid[(y * size) + x] & 0x40) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
case 7: if (grid[(y * size) + x] & 0x80) { local[(y * size) + x] = '1'; } else { local[(y * size) + x] = '0'; } break;
}
}
}
/* Test 1: Adjacent modules in row/column in same colour */
/* Vertical */
for(x = 0; x < size; x++) {
state = local[x];
block = 0;
for(y = 0; y < size; y++) {
if(local[(y * size) + x] == state) {
block++;
} else {
if(block > 5) {
result += (3 + block);
}
block = 0;
state = local[(y * size) + x];
}
}
if(block > 5) {
result += (3 + block);
}
}
/* Horizontal */
for(y = 0; y < size; y++) {
state = local[y * size];
block = 0;
for(x = 0; x < size; x++) {
if(local[(y * size) + x] == state) {
block++;
} else {
if(block > 5) {
result += (3 + block);
}
block = 0;
state = local[(y * size) + x];
}
}
if(block > 5) {
result += (3 + block);
}
}
/* Test 2 is not implimented */
/* Test 3: 1:1:3:1:1 ratio pattern in row/column */
/* Vertical */
for(x = 0; x < size; x++) {
for(y = 0; y < (size - 7); y++) {
p = 0;
if(local[(y * size) + x] == '1') { p += 0x40; }
if(local[((y + 1) * size) + x] == '1') { p += 0x20; }
if(local[((y + 2) * size) + x] == '1') { p += 0x10; }
if(local[((y + 3) * size) + x] == '1') { p += 0x08; }
if(local[((y + 4) * size) + x] == '1') { p += 0x04; }
if(local[((y + 5) * size) + x] == '1') { p += 0x02; }
if(local[((y + 6) * size) + x] == '1') { p += 0x01; }
if(p == 0x5d) {
result += 40;
}
}
}
/* Horizontal */
for(y = 0; y < size; y++) {
for(x = 0; x < (size - 7); x++) {
p = 0;
if(local[(y * size) + x] == '1') { p += 0x40; }
if(local[(y * size) + x + 1] == '1') { p += 0x20; }
if(local[(y * size) + x + 2] == '1') { p += 0x10; }
if(local[(y * size) + x + 3] == '1') { p += 0x08; }
if(local[(y * size) + x + 4] == '1') { p += 0x04; }
if(local[(y * size) + x + 5] == '1') { p += 0x02; }
if(local[(y * size) + x + 6] == '1') { p += 0x01; }
if(p == 0x5d) {
result += 40;
}
}
}
/* Test 4: Proportion of dark modules in entire symbol */
dark_mods = 0;
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
if(local[(y * size) + x] == '1') {
dark_mods++;
}
}
}
percentage = 100 * (dark_mods / (size * size));
if(percentage <= 50) {
k = ((100 - percentage) - 50) / 5;
} else {
k = (percentage - 50) / 5;
}
result += 10 * k;
return result;
}
int apply_bitmask(unsigned char *grid, int size)
{
int x, y;
unsigned char p;
int pattern, penalty[8];
int best_val, best_pattern;
int bit;
#ifndef _MSC_VER
unsigned char mask[size * size];
unsigned char eval[size * size];
#else
unsigned char* mask = (unsigned char *)_alloca((size * size) * sizeof(unsigned char));
unsigned char* eval = (unsigned char *)_alloca((size * size) * sizeof(unsigned char));
#endif
/* Perform data masking */
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
mask[(y * size) + x] = 0x00;
if (!(grid[(y * size) + x] & 0xf0)) {
if(((y + x) & 1) == 0) { mask[(y * size) + x] += 0x01; }
if((y & 1) == 0) { mask[(y * size) + x] += 0x02; }
if((x % 3) == 0) { mask[(y * size) + x] += 0x04; }
if(((y + x) % 3) == 0) { mask[(y * size) + x] += 0x08; }
if((((y / 2) + (x / 3)) & 1) == 0) { mask[(y * size) + x] += 0x10; }
if((((y * x) & 1) + ((y * x) % 3)) == 0) { mask[(y * size) + x] += 0x20; }
if(((((y * x) & 1) + ((y * x) % 3)) & 1) == 0) { mask[(y * size) + x] += 0x40; }
if(((((y + x) & 1) + ((y * x) % 3)) & 1) == 0) { mask[(y * size) + x] += 0x80; }
}
}
}
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
if(grid[(y * size) + x] & 0x01) { p = 0xff; } else { p = 0x00; }
eval[(y * size) + x] = mask[(y * size) + x] ^ p;
}
}
/* Evaluate result */
for(pattern = 0; pattern < 8; pattern++) {
penalty[pattern] = evaluate(eval, size, pattern);
}
best_pattern = 0;
best_val = penalty[0];
for(pattern = 1; pattern < 8; pattern++) {
if(penalty[pattern] < best_val) {
best_pattern = pattern;
best_val = penalty[pattern];
}
}
/* Apply mask */
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
bit = 0;
switch(best_pattern) {
case 0: if(mask[(y * size) + x] & 0x01) { bit = 1; } break;
case 1: if(mask[(y * size) + x] & 0x02) { bit = 1; } break;
case 2: if(mask[(y * size) + x] & 0x04) { bit = 1; } break;
case 3: if(mask[(y * size) + x] & 0x08) { bit = 1; } break;
case 4: if(mask[(y * size) + x] & 0x10) { bit = 1; } break;
case 5: if(mask[(y * size) + x] & 0x20) { bit = 1; } break;
case 6: if(mask[(y * size) + x] & 0x40) { bit = 1; } break;
case 7: if(mask[(y * size) + x] & 0x80) { bit = 1; } break;
}
if(bit == 1) {
if(grid[(y * size) + x] & 0x01) {
grid[(y * size) + x] = 0x00;
} else {
grid[(y * size) + x] = 0x01;
}
}
}
}
return best_pattern;
}
void add_format_info(unsigned char *grid, int size, int ecc_level, int pattern)
{
/* Add format information to grid */
int format = pattern;
unsigned int seq;
int i;
switch(ecc_level) {
case LEVEL_L: format += 0x08; break;
case LEVEL_Q: format += 0x18; break;
case LEVEL_H: format += 0x10; break;
}
seq = qr_annex_c[format];
for(i = 0; i < 6; i++) {
grid[(i * size) + 8] += (seq >> i) & 0x01;
}
for(i = 0; i < 8; i++) {
grid[(8 * size) + (size - i - 1)] += (seq >> i) & 0x01;
}
for(i = 0; i < 6; i++) {
grid[(8 * size) + (5 - i)] += (seq >> (i + 9)) & 0x01;
}
for(i = 0; i < 7; i++) {
grid[(((size - 7) + i) * size) + 8] += (seq >> (i + 8)) & 0x01;
}
grid[(7 * size) + 8] += (seq >> 6) & 0x01;
grid[(8 * size) + 8] += (seq >> 7) & 0x01;
grid[(8 * size) + 7] += (seq >> 8) & 0x01;
}
void add_version_info(unsigned char *grid, int size, int version)
{
/* Add version information */
int i;
long int version_data = qr_annex_d[version - 7];
for(i = 0; i < 6; i++) {
grid[((size - 11) * size) + i] += (version_data >> (i * 3)) & 0x01;
grid[((size - 10) * size) + i] += (version_data >> ((i * 3) + 1)) & 0x01;
grid[((size - 9) * size) + i] += (version_data >> ((i * 3) + 2)) & 0x01;
grid[(i * size) + (size - 11)] += (version_data >> (i * 3)) & 0x01;
grid[(i * size) + (size - 10)] += (version_data >> ((i * 3) + 1)) & 0x01;
grid[(i * size) + (size - 9)] += (version_data >> ((i * 3) + 2)) & 0x01;
}
}
int qr_code(struct zint_symbol *symbol, unsigned char source[], int length)
{
int error_number, i, j, glyph, est_binlen;
int ecc_level, autosize, version, max_cw, target_binlen, blocks, size;
int bitmask, gs1;
#ifndef _MSC_VER
int utfdata[length + 1];
int jisdata[length + 1];
char mode[length + 1];
#else
int* datastream;
int* fullstream;
unsigned char* grid;
int* utfdata = (int *)_alloca((length + 1) * sizeof(int));
int* jisdata = (int *)_alloca((length + 1) * sizeof(int));
char* mode = (char *)_alloca(length + 1);
#endif
gs1 = (symbol->input_mode == GS1_MODE);
switch(symbol->input_mode) {
case DATA_MODE:
for(i = 0; i < length; i++) {
jisdata[i] = (int)source[i];
}
break;
default:
/* Convert Unicode input to Shift-JIS */
error_number = utf8toutf16(symbol, source, utfdata, &length);
if(error_number != 0) { return error_number; }
for(i = 0; i < length; i++) {
if(utfdata[i] <= 0xff) {
jisdata[i] = utfdata[i];
} else {
j = 0;
glyph = 0;
do {
if(sjis_lookup[j * 2] == utfdata[i]) {
glyph = sjis_lookup[(j * 2) + 1];
}
j++;
} while ((j < 6843) && (glyph == 0));
if(glyph == 0) {
strcpy(symbol->errtxt, "Invalid character in input data");
return ERROR_INVALID_DATA1;
}
jisdata[i] = glyph;
}
}
break;
}
define_mode(mode, jisdata, length, gs1);
est_binlen = estimate_binary_length(mode, length, gs1);
ecc_level = LEVEL_L;
max_cw = 2956;
if((symbol->option_1 >= 1) && (symbol->option_1 <= 4)) {
switch (symbol->option_1) {
case 1: ecc_level = LEVEL_L; max_cw = 2956; break;
case 2: ecc_level = LEVEL_M; max_cw = 2334; break;
case 3: ecc_level = LEVEL_Q; max_cw = 1666; break;
case 4: ecc_level = LEVEL_H; max_cw = 1276; break;
}
}
if(est_binlen > (8 * max_cw)) {
strcpy(symbol->errtxt, "Input too long for selected error correction level");
return ERROR_TOO_LONG;
}
autosize = 40;
for(i = 39; i >= 0; i--) {
switch(ecc_level) {
case LEVEL_L:
if ((8 * qr_data_codewords_L[i]) >= est_binlen) {
autosize = i + 1;
}
break;
case LEVEL_M:
if ((8 * qr_data_codewords_M[i]) >= est_binlen) {
autosize = i + 1;
}
break;
case LEVEL_Q:
if ((8 * qr_data_codewords_Q[i]) >= est_binlen) {
autosize = i + 1;
}
break;
case LEVEL_H:
if ((8 * qr_data_codewords_H[i]) >= est_binlen) {
autosize = i + 1;
}
break;
}
}
if((symbol->option_2 >= 1) && (symbol->option_2 <= 40)) {
if (symbol->option_2 > autosize) {
version = symbol->option_2;
} else {
version = autosize;
}
} else {
version = autosize;
}
/* Ensure maxium error correction capacity */
if(est_binlen <= qr_data_codewords_M[version - 1]) { ecc_level = LEVEL_M; }
if(est_binlen <= qr_data_codewords_Q[version - 1]) { ecc_level = LEVEL_Q; }
if(est_binlen <= qr_data_codewords_H[version - 1]) { ecc_level = LEVEL_H; }
target_binlen = qr_data_codewords_L[version - 1]; blocks = qr_blocks_L[version - 1];
switch(ecc_level) {
case LEVEL_M: target_binlen = qr_data_codewords_M[version - 1]; blocks = qr_blocks_M[version - 1]; break;
case LEVEL_Q: target_binlen = qr_data_codewords_Q[version - 1]; blocks = qr_blocks_Q[version - 1]; break;
case LEVEL_H: target_binlen = qr_data_codewords_H[version - 1]; blocks = qr_blocks_H[version - 1]; break;
}
#ifndef _MSC_VER
int datastream[target_binlen + 1];
int fullstream[qr_total_codewords[version - 1] + 1];
#else
datastream = (int *)_alloca((target_binlen + 1) * sizeof(int));
fullstream = (int *)_alloca((qr_total_codewords[version - 1] + 1) * sizeof(int));
#endif
qr_binary(datastream, version, target_binlen, mode, jisdata, length, gs1, est_binlen);
add_ecc(fullstream, datastream, version, target_binlen, blocks);
size = qr_sizes[version - 1];
#ifndef _MSC_VER
unsigned char grid[size * size];
#else
grid = (unsigned char *)_alloca((size * size) * sizeof(unsigned char));
#endif
for(i = 0; i < size; i++) {
for(j = 0; j < size; j++) {
grid[(i * size) + j] = 0;
}
}
setup_grid(grid, size, version);
populate_grid(grid, size, fullstream, qr_total_codewords[version - 1]);
bitmask = apply_bitmask(grid, size);
add_format_info(grid, size, ecc_level, bitmask);
if(version >= 7) {
add_version_info(grid, size, version);
}
symbol->width = size;
symbol->rows = size;
for(i = 0; i < size; i++) {
for(j = 0; j < size; j++) {
if(grid[(i * size) + j] & 0x01) {
set_module(symbol, i, j);
}
}
symbol->row_height[i] = 1;
}
return 0;
}
/* NOTE: From this point forward concerns Micro QR Code only */
int micro_qr_intermediate(char binary[], int jisdata[], char mode[], int length, int *kanji_used, int *alphanum_used, int *byte_used)
{
/* Convert input data to an "intermediate stage" where data is binary encoded but
control information is not */
int position = 0, debug = 0;
int short_data_block_length, i;
char data_block;
char buffer[2];
strcpy(binary, "");
if(debug) {
for(i = 0; i < length; i++) {
printf("%c", mode[i]);
}
printf("\n");
}
do {
if(strlen(binary) > 128) {
return ERROR_TOO_LONG;
}
data_block = mode[position];
short_data_block_length = 0;
do {
short_data_block_length++;
} while (((short_data_block_length + position) < length) && (mode[position + short_data_block_length] == data_block));
switch(data_block) {
case 'K':
/* Kanji mode */
/* Mode indicator */
concat(binary, "K");
*kanji_used = 1;
/* Character count indicator */
buffer[0] = short_data_block_length;
buffer[1] = '\0';
concat(binary, buffer);
if(debug) { printf("Kanji block (length %d)\n\t", short_data_block_length); }
/* Character representation */
for(i = 0; i < short_data_block_length; i++) {
int jis = jisdata[position + i];
int msb, lsb, prod;
if(jis > 0x9fff) { jis -= 0xc140; }
msb = (jis & 0xff00) >> 4;
lsb = (jis & 0xff);
prod = (msb * 0xc0) + lsb;
qr_bscan(binary, prod, 0x1000);
if(debug) { printf("0x%4X ", prod); }
if(strlen(binary) > 128) {
return ERROR_TOO_LONG;
}
}
if(debug) { printf("\n"); }
break;
case 'B':
/* Byte mode */
/* Mode indicator */
concat(binary, "B");
*byte_used = 1;
/* Character count indicator */
buffer[0] = short_data_block_length;
buffer[1] = '\0';
concat(binary, buffer);
if(debug) { printf("Byte block (length %d)\n\t", short_data_block_length); }
/* Character representation */
for(i = 0; i < short_data_block_length; i++) {
int byte = jisdata[position + i];
qr_bscan(binary, byte, 0x80);
if(debug) { printf("0x%4X ", byte); }
if(strlen(binary) > 128) {
return ERROR_TOO_LONG;
}
}
if(debug) { printf("\n"); }
break;
case 'A':
/* Alphanumeric mode */
/* Mode indicator */
concat(binary, "A");
*alphanum_used = 1;
/* Character count indicator */
buffer[0] = short_data_block_length;
buffer[1] = '\0';
concat(binary, buffer);
if(debug) { printf("Alpha block (length %d)\n\t", short_data_block_length); }
/* Character representation */
i = 0;
while ( i < short_data_block_length ) {
int count;
int first = 0, second = 0, prod;
first = posn(RHODIUM, (char) jisdata[position + i]);
count = 1;
prod = first;
if(mode[position + i + 1] == 'A') {
second = posn(RHODIUM, (char) jisdata[position + i + 1]);
count = 2;
prod = (first * 45) + second;
}
qr_bscan(binary, prod, 1 << (5 * count)); /* count = 1..2 */
if(debug) { printf("0x%4X ", prod); }
if(strlen(binary) > 128) {
return ERROR_TOO_LONG;
}
i += 2;
};
if(debug) { printf("\n"); }
break;
case 'N':
/* Numeric mode */
/* Mode indicator */
concat(binary, "N");
/* Character count indicator */
buffer[0] = short_data_block_length;
buffer[1] = '\0';
concat(binary, buffer);
if(debug) { printf("Number block (length %d)\n\t", short_data_block_length); }
/* Character representation */
i = 0;
while ( i < short_data_block_length ) {
int count;
int first = 0, second = 0, third = 0, prod;
first = posn(NEON, (char) jisdata[position + i]);
count = 1;
prod = first;
if(mode[position + i + 1] == 'N') {
second = posn(NEON, (char) jisdata[position + i + 1]);
count = 2;
prod = (prod * 10) + second;
}
if(mode[position + i + 2] == 'N') {
third = posn(NEON, (char) jisdata[position + i + 2]);
count = 3;
prod = (prod * 10) + third;
}
qr_bscan(binary, prod, 1 << (3 * count)); /* count = 1..3 */
if(debug) { printf("0x%4X (%d)", prod, prod); }
if(strlen(binary) > 128) {
return ERROR_TOO_LONG;
}
i += 3;
};
if(debug) { printf("\n"); }
break;
}
position += short_data_block_length;
} while (position < length - 1) ;
return 0;
}
void get_bitlength(int count[], char stream[]) {
int length, i;
length = strlen(stream);
for(i = 0; i < 4; i++) {
count[i] = 0;
}
i = 0;
do {
if((stream[i] == '0') || (stream[i] == '1')) {
count[0]++;
count[1]++;
count[2]++;
count[3]++;
i++;
} else {
switch(stream[i]) {
case 'K':
count[2] += 5;
count[3] += 7;
i += 2;
break;
case 'B':
count[2] += 6;
count[3] += 8;
i += 2;
break;
case 'A':
count[1] += 4;
count[2] += 6;
count[3] += 8;
i += 2;
break;
case 'N':
count[0] += 3;
count[1] += 5;
count[2] += 7;
count[3] += 9;
i += 2;
break;
}
}
} while (i < length);
}
void microqr_expand_binary(char binary_stream[], char full_stream[], int version)
{
int i, length;
length = strlen(binary_stream);
i = 0;
do {
switch(binary_stream[i]) {
case '1': concat(full_stream, "1"); i++; break;
case '0': concat(full_stream, "0"); i++; break;
case 'N':
/* Numeric Mode */
/* Mode indicator */
switch(version) {
case 1: concat(full_stream, "0"); break;
case 2: concat(full_stream, "00"); break;
case 3: concat(full_stream, "000"); break;
}
/* Character count indicator */
qr_bscan(full_stream, binary_stream[i + 1], 4 << version); /* version = 0..3 */
i += 2;
break;
case 'A':
/* Alphanumeric Mode */
/* Mode indicator */
switch(version) {
case 1: concat(full_stream, "1"); break;
case 2: concat(full_stream, "01"); break;
case 3: concat(full_stream, "001"); break;
}
/* Character count indicator */
qr_bscan(full_stream, binary_stream[i + 1], 2 << version); /* version = 1..3 */
i += 2;
break;
case 'B':
/* Byte Mode */
/* Mode indicator */
switch(version) {
case 2: concat(full_stream, "10"); break;
case 3: concat(full_stream, "010"); break;
}
/* Character count indicator */
qr_bscan(full_stream, binary_stream[i + 1], 2 << version); /* version = 2..3 */
i += 2;
break;
case 'K':
/* Kanji Mode */
/* Mode indicator */
switch(version) {
case 2: concat(full_stream, "11"); break;
case 3: concat(full_stream, "011"); break;
}
/* Character count indicator */
qr_bscan(full_stream, binary_stream[i + 1], 1 << version); /* version = 2..3 */
i += 2;
break;
}
} while (i < length);
}
void micro_qr_m1(char binary_data[])
{
int i, latch;
int bits_total, bits_left, remainder;
int data_codewords, ecc_codewords;
unsigned char data_blocks[4], ecc_blocks[3];
bits_total = 20;
latch = 0;
/* Add terminator */
bits_left = bits_total - strlen(binary_data);
if(bits_left <= 3) {
for(i = 0; i < bits_left; i++) {
concat(binary_data, "0");
}
latch = 1;
} else {
concat(binary_data, "000");
}
if(latch == 0) {
/* Manage last (4-bit) block */
bits_left = bits_total - strlen(binary_data);
if(bits_left <= 4) {
for(i = 0; i < bits_left; i++) {
concat(binary_data, "0");
}
latch = 1;
}
}
if(latch == 0) {
/* Complete current byte */
remainder = 8 - (strlen(binary_data) % 8);
if(remainder == 8) { remainder = 0; }
for(i = 0; i < remainder; i++) {
concat(binary_data, "0");
}
/* Add padding */
bits_left = bits_total - strlen(binary_data);
if(bits_left > 4) {
remainder = (bits_left - 4) / 8;
for(i = 0; i < remainder; i++) {
concat(binary_data, i & 1 ? "00010001" : "11101100");
}
}
concat(binary_data, "0000");
}
data_codewords = 3;
ecc_codewords = 2;
/* Copy data into codewords */
for(i = 0; i < (data_codewords - 1); i++) {
data_blocks[i] = 0;
if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; }
if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; }
if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; }
if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; }
if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; }
if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; }
if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; }
if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; }
}
data_blocks[2] = 0;
if(binary_data[16] == '1') { data_blocks[2] += 0x08; }
if(binary_data[17] == '1') { data_blocks[2] += 0x04; }
if(binary_data[18] == '1') { data_blocks[2] += 0x02; }
if(binary_data[19] == '1') { data_blocks[2] += 0x01; }
/* Calculate Reed-Solomon error codewords */
rs_init_gf(0x11d);
rs_init_code(ecc_codewords, 0);
rs_encode(data_codewords,data_blocks,ecc_blocks);
rs_free();
/* Add Reed-Solomon codewords to binary data */
for(i = 0; i < ecc_codewords; i++) {
qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80);
}
}
void micro_qr_m2(char binary_data[], int ecc_mode)
{
int i, latch;
int bits_total, bits_left, remainder;
int data_codewords, ecc_codewords;
unsigned char data_blocks[6], ecc_blocks[7];
latch = 0;
if(ecc_mode == LEVEL_L) { bits_total = 40; }
if(ecc_mode == LEVEL_M) { bits_total = 32; }
/* Add terminator */
bits_left = bits_total - strlen(binary_data);
if(bits_left <= 5) {
for(i = 0; i < bits_left; i++) {
concat(binary_data, "0");
}
latch = 1;
} else {
concat(binary_data, "00000");
}
if(latch == 0) {
/* Complete current byte */
remainder = 8 - (strlen(binary_data) % 8);
if(remainder == 8) { remainder = 0; }
for(i = 0; i < remainder; i++) {
concat(binary_data, "0");
}
/* Add padding */
bits_left = bits_total - strlen(binary_data);
remainder = bits_left / 8;
for(i = 0; i < remainder; i++) {
concat(binary_data, i & 1 ? "00010001" : "11101100");
}
}
if(ecc_mode == LEVEL_L) { data_codewords = 5; ecc_codewords = 5; }
if(ecc_mode == LEVEL_M) { data_codewords = 4; ecc_codewords = 6; }
/* Copy data into codewords */
for(i = 0; i < data_codewords; i++) {
data_blocks[i] = 0;
if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; }
if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; }
if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; }
if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; }
if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; }
if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; }
if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; }
if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; }
}
/* Calculate Reed-Solomon error codewords */
rs_init_gf(0x11d);
rs_init_code(ecc_codewords, 0);
rs_encode(data_codewords,data_blocks,ecc_blocks);
rs_free();
/* Add Reed-Solomon codewords to binary data */
for(i = 0; i < ecc_codewords; i++) {
qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80);
}
return;
}
void micro_qr_m3(char binary_data[], int ecc_mode)
{
int i, latch;
int bits_total, bits_left, remainder;
int data_codewords, ecc_codewords;
unsigned char data_blocks[12], ecc_blocks[9];
latch = 0;
if(ecc_mode == LEVEL_L) { bits_total = 84; }
if(ecc_mode == LEVEL_M) { bits_total = 68; }
/* Add terminator */
bits_left = bits_total - strlen(binary_data);
if(bits_left <= 7) {
for(i = 0; i < bits_left; i++) {
concat(binary_data, "0");
}
latch = 1;
} else {
concat(binary_data, "0000000");
}
if(latch == 0) {
/* Manage last (4-bit) block */
bits_left = bits_total - strlen(binary_data);
if(bits_left <= 4) {
for(i = 0; i < bits_left; i++) {
concat(binary_data, "0");
}
latch = 1;
}
}
if(latch == 0) {
/* Complete current byte */
remainder = 8 - (strlen(binary_data) % 8);
if(remainder == 8) { remainder = 0; }
for(i = 0; i < remainder; i++) {
concat(binary_data, "0");
}
/* Add padding */
bits_left = bits_total - strlen(binary_data);
if(bits_left > 4) {
remainder = (bits_left - 4) / 8;
for(i = 0; i < remainder; i++) {
concat(binary_data, i & 1 ? "00010001" : "11101100");
}
}
concat(binary_data, "0000");
}
if(ecc_mode == LEVEL_L) { data_codewords = 11; ecc_codewords = 6; }
if(ecc_mode == LEVEL_M) { data_codewords = 9; ecc_codewords = 8; }
/* Copy data into codewords */
for(i = 0; i < (data_codewords - 1); i++) {
data_blocks[i] = 0;
if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; }
if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; }
if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; }
if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; }
if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; }
if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; }
if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; }
if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; }
}
if(ecc_mode == LEVEL_L) {
data_blocks[11] = 0;
if(binary_data[80] == '1') { data_blocks[2] += 0x08; }
if(binary_data[81] == '1') { data_blocks[2] += 0x04; }
if(binary_data[82] == '1') { data_blocks[2] += 0x02; }
if(binary_data[83] == '1') { data_blocks[2] += 0x01; }
}
if(ecc_mode == LEVEL_M) {
data_blocks[9] = 0;
if(binary_data[64] == '1') { data_blocks[2] += 0x08; }
if(binary_data[65] == '1') { data_blocks[2] += 0x04; }
if(binary_data[66] == '1') { data_blocks[2] += 0x02; }
if(binary_data[67] == '1') { data_blocks[2] += 0x01; }
}
/* Calculate Reed-Solomon error codewords */
rs_init_gf(0x11d);
rs_init_code(ecc_codewords, 0);
rs_encode(data_codewords,data_blocks,ecc_blocks);
rs_free();
/* Add Reed-Solomon codewords to binary data */
for(i = 0; i < ecc_codewords; i++) {
qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80);
}
return;
}
void micro_qr_m4(char binary_data[], int ecc_mode)
{
int i, latch;
int bits_total, bits_left, remainder;
int data_codewords, ecc_codewords;
unsigned char data_blocks[17], ecc_blocks[15];
latch = 0;
if(ecc_mode == LEVEL_L) { bits_total = 128; }
if(ecc_mode == LEVEL_M) { bits_total = 112; }
if(ecc_mode == LEVEL_Q) { bits_total = 80; }
/* Add terminator */
bits_left = bits_total - strlen(binary_data);
if(bits_left <= 9) {
for(i = 0; i < bits_left; i++) {
concat(binary_data, "0");
}
latch = 1;
} else {
concat(binary_data, "000000000");
}
if(latch == 0) {
/* Complete current byte */
remainder = 8 - (strlen(binary_data) % 8);
if(remainder == 8) { remainder = 0; }
for(i = 0; i < remainder; i++) {
concat(binary_data, "0");
}
/* Add padding */
bits_left = bits_total - strlen(binary_data);
remainder = bits_left / 8;
for(i = 0; i < remainder; i++) {
concat(binary_data, i & 1 ? "00010001" : "11101100");
}
}
if(ecc_mode == LEVEL_L) { data_codewords = 16; ecc_codewords = 8; }
if(ecc_mode == LEVEL_M) { data_codewords = 14; ecc_codewords = 10; }
if(ecc_mode == LEVEL_Q) { data_codewords = 10; ecc_codewords = 14; }
/* Copy data into codewords */
for(i = 0; i < data_codewords; i++) {
data_blocks[i] = 0;
if(binary_data[i * 8] == '1') { data_blocks[i] += 0x80; }
if(binary_data[(i * 8) + 1] == '1') { data_blocks[i] += 0x40; }
if(binary_data[(i * 8) + 2] == '1') { data_blocks[i] += 0x20; }
if(binary_data[(i * 8) + 3] == '1') { data_blocks[i] += 0x10; }
if(binary_data[(i * 8) + 4] == '1') { data_blocks[i] += 0x08; }
if(binary_data[(i * 8) + 5] == '1') { data_blocks[i] += 0x04; }
if(binary_data[(i * 8) + 6] == '1') { data_blocks[i] += 0x02; }
if(binary_data[(i * 8) + 7] == '1') { data_blocks[i] += 0x01; }
}
/* Calculate Reed-Solomon error codewords */
rs_init_gf(0x11d);
rs_init_code(ecc_codewords, 0);
rs_encode(data_codewords,data_blocks,ecc_blocks);
rs_free();
/* Add Reed-Solomon codewords to binary data */
for(i = 0; i < ecc_codewords; i++) {
qr_bscan(binary_data, ecc_blocks[ecc_codewords - i - 1], 0x80);
}
}
void micro_setup_grid(unsigned char* grid, int size)
{
int i, toggle = 1;
/* Add timing patterns */
for(i = 0; i < size; i++) {
if(toggle == 1) {
grid[i] = 0x21;
grid[(i * size)] = 0x21;
toggle = 0;
} else {
grid[i] = 0x20;
grid[(i * size)] = 0x20;
toggle = 1;
}
}
/* Add finder patterns */
place_finder(grid, size, 0, 0);
/* Add separators */
for(i = 0; i < 7; i++) {
grid[(7 * size) + i] = 0x10;
grid[(i * size) + 7] = 0x10;
}
grid[(7 * size) + 7] = 0x10;
/* Reserve space for format information */
for(i = 0; i < 8; i++) {
grid[(8 * size) + i] += 0x20;
grid[(i * size) + 8] += 0x20;
}
grid[(8 * size) + 8] += 20;
}
void micro_populate_grid(unsigned char* grid, int size, char full_stream[])
{
int direction = 1; /* up */
int row = 0; /* right hand side */
int i, n, x, y;
n = strlen(full_stream);
y = size - 1;
i = 0;
do {
x = (size - 2) - (row * 2);
if(!(grid[(y * size) + (x + 1)] & 0xf0)) {
if (full_stream[i] == '1') {
grid[(y * size) + (x + 1)] = 0x01;
} else {
grid[(y * size) + (x + 1)] = 0x00;
}
i++;
}
if(i < n) {
if(!(grid[(y * size) + x] & 0xf0)) {
if (full_stream[i] == '1') {
grid[(y * size) + x] = 0x01;
} else {
grid[(y * size) + x] = 0x00;
}
i++;
}
}
if(direction) { y--; } else { y++; }
if(y == 0) {
/* reached the top */
row++;
y = 1;
direction = 0;
}
if(y == size) {
/* reached the bottom */
row++;
y = size - 1;
direction = 1;
}
} while (i < n);
}
int micro_evaluate(unsigned char *grid, int size, int pattern)
{
int sum1, sum2, i, filter = 0, retval;
switch(pattern) {
case 0: filter = 0x01; break;
case 1: filter = 0x02; break;
case 2: filter = 0x04; break;
case 3: filter = 0x08; break;
}
sum1 = 0;
sum2 = 0;
for(i = 1; i < size; i++) {
if(grid[(i * size) + size - 1] & filter) { sum1++; }
if(grid[((size - 1) * size) + i] & filter) { sum2++; }
}
if(sum1 <= sum2) { retval = (sum1 * 16) + sum2; } else { retval = (sum2 * 16) + sum1; }
return retval;
}
int micro_apply_bitmask(unsigned char *grid, int size)
{
int x, y;
unsigned char p;
int pattern, value[8];
int best_val, best_pattern;
int bit;
#ifndef _MSC_VER
unsigned char mask[size * size];
unsigned char eval[size * size];
#else
unsigned char* mask = (unsigned char *)_alloca((size * size) * sizeof(unsigned char));
unsigned char* eval = (unsigned char *)_alloca((size * size) * sizeof(unsigned char));
#endif
/* Perform data masking */
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
mask[(y * size) + x] = 0x00;
if (!(grid[(y * size) + x] & 0xf0)) {
if((y & 1) == 0) {
mask[(y * size) + x] += 0x01;
}
if((((y / 2) + (x / 3)) & 1) == 0) {
mask[(y * size) + x] += 0x02;
}
if(((((y * x) & 1) + ((y * x) % 3)) & 1) == 0) {
mask[(y * size) + x] += 0x04;
}
if(((((y + x) & 1) + ((y * x) % 3)) & 1) == 0) {
mask[(y * size) + x] += 0x08;
}
}
}
}
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
if(grid[(y * size) + x] & 0x01) { p = 0xff; } else { p = 0x00; }
eval[(y * size) + x] = mask[(y * size) + x] ^ p;
}
}
/* Evaluate result */
for(pattern = 0; pattern < 8; pattern++) {
value[pattern] = micro_evaluate(eval, size, pattern);
}
best_pattern = 0;
best_val = value[0];
for(pattern = 1; pattern < 4; pattern++) {
if(value[pattern] > best_val) {
best_pattern = pattern;
best_val = value[pattern];
}
}
/* Apply mask */
for(x = 0; x < size; x++) {
for(y = 0; y < size; y++) {
bit = 0;
switch(best_pattern) {
case 0: if(mask[(y * size) + x] & 0x01) { bit = 1; } break;
case 1: if(mask[(y * size) + x] & 0x02) { bit = 1; } break;
case 2: if(mask[(y * size) + x] & 0x04) { bit = 1; } break;
case 3: if(mask[(y * size) + x] & 0x08) { bit = 1; } break;
}
if(bit == 1) {
if(grid[(y * size) + x] & 0x01) {
grid[(y * size) + x] = 0x00;
} else {
grid[(y * size) + x] = 0x01;
}
}
}
}
return best_pattern;
}
int microqr(struct zint_symbol *symbol, unsigned char source[], int length)
{
int i, j, glyph, size;
char binary_stream[200];
char full_stream[200];
int utfdata[40];
int jisdata[40];
char mode[40];
int error_number, kanji_used = 0, alphanum_used = 0, byte_used = 0;
int version_valid[4];
int binary_count[4];
int ecc_level, autoversion, version;
int n_count, a_count, bitmask, format, format_full;
#ifdef _MSC_VER
unsigned char* grid;
#endif
if(length > 35) {
strcpy(symbol->errtxt, "Input data too long");
return ERROR_TOO_LONG;
}
for(i = 0; i < 4; i++) {
version_valid[i] = 1;
}
switch(symbol->input_mode) {
case DATA_MODE:
for(i = 0; i < length; i++) {
jisdata[i] = (int)source[i];
}
break;
default:
/* Convert Unicode input to Shift-JIS */
error_number = utf8toutf16(symbol, source, utfdata, &length);
if(error_number != 0) { return error_number; }
for(i = 0; i < length; i++) {
if(utfdata[i] <= 0xff) {
jisdata[i] = utfdata[i];
} else {
j = 0;
glyph = 0;
do {
if(sjis_lookup[j * 2] == utfdata[i]) {
glyph = sjis_lookup[(j * 2) + 1];
}
j++;
} while ((j < 6843) && (glyph == 0));
if(glyph == 0) {
strcpy(symbol->errtxt, "Invalid character in input data");
return ERROR_INVALID_DATA1;
}
jisdata[i] = glyph;
}
}
break;
}
define_mode(mode, jisdata, length, 0);
n_count = 0;
a_count = 0;
for(i = 0; i < length; i++) {
if((jisdata[i] >= '0') && (jisdata[i] <= '9')) { n_count++; }
if(in_alpha(jisdata[i])) { a_count++; }
}
if(a_count == length) {
/* All data can be encoded in Alphanumeric mode */
for(i = 0; i < length; i++) {
mode[i] = 'A';
}
}
if(n_count == length) {
/* All data can be encoded in Numeric mode */
for(i = 0; i < length; i++) {
mode[i] = 'N';
}
}
error_number = micro_qr_intermediate(binary_stream, jisdata, mode, length, &kanji_used, &alphanum_used, &byte_used);
if(error_number != 0) {
strcpy(symbol->errtxt, "Input data too long");
return error_number;
}
get_bitlength(binary_count, binary_stream);
/* Eliminate possivle versions depending on type of content */
if(byte_used) {
version_valid[0] = 0;
version_valid[1] = 0;
}
if(alphanum_used) {
version_valid[0] = 0;
}
if(kanji_used) {
version_valid[0] = 0;
version_valid[1] = 0;
}
/* Eliminate possible versions depending on length of binary data */
if(binary_count[0] > 20) { version_valid[0] = 0; }
if(binary_count[1] > 40) { version_valid[1] = 0; }
if(binary_count[2] > 84) { version_valid[2] = 0; }
if(binary_count[3] > 128) {
strcpy(symbol->errtxt, "Input data too long");
return ERROR_TOO_LONG;
}
/* Eliminate possible versions depending on error correction level specified */
ecc_level = LEVEL_L;
if((symbol->option_1 >= 1) && (symbol->option_2 <= 4)) {
ecc_level = symbol->option_1;
}
if(ecc_level == LEVEL_H) {
strcpy(symbol->errtxt, "Error correction level H not available");
return ERROR_INVALID_OPTION;
}
if(ecc_level == LEVEL_Q) {
version_valid[0] = 0;
version_valid[1] = 0;
version_valid[2] = 0;
if(binary_count[3] > 80) {
strcpy(symbol->errtxt, "Input data too long");
return ERROR_TOO_LONG;
}
}
if(ecc_level == LEVEL_M) {
version_valid[0] = 0;
if(binary_count[1] > 32) { version_valid[1] = 0; }
if(binary_count[2] > 68) { version_valid[2] = 0; }
if(binary_count[3] > 112) {
strcpy(symbol->errtxt, "Input data too long");
return ERROR_TOO_LONG;
}
}
autoversion = 3;
if(version_valid[2]) { autoversion = 2; }
if(version_valid[1]) { autoversion = 1; }
if(version_valid[0]) { autoversion = 0; }
version = autoversion;
/* Get version from user */
if((symbol->option_2 >= 1) && (symbol->option_2 <= 4)) {
if(symbol->option_2 >= autoversion) {
version = symbol->option_2;
}
}
/* If there is enough unused space then increase the error correction level */
if(version == 3) {
if(binary_count[3] <= 112) { ecc_level = LEVEL_M; }
if(binary_count[3] <= 80) { ecc_level = LEVEL_Q; }
}
if(version == 2) {
if(binary_count[2] <= 68) { ecc_level = LEVEL_M; }
}
if(version == 1) {
if(binary_count[1] <= 32) { ecc_level = LEVEL_M; }
}
strcpy(full_stream, "");
microqr_expand_binary(binary_stream, full_stream, version);
switch(version) {
case 0: micro_qr_m1(full_stream); break;
case 1: micro_qr_m2(full_stream, ecc_level); break;
case 2: micro_qr_m3(full_stream, ecc_level); break;
case 3: micro_qr_m4(full_stream, ecc_level); break;
}
size = micro_qr_sizes[version];
#ifndef _MSC_VER
unsigned char grid[size * size];
#else
grid = (unsigned char *)_alloca((size * size) * sizeof(unsigned char));
#endif
for(i = 0; i < size; i++) {
for(j = 0; j < size; j++) {
grid[(i * size) + j] = 0;
}
}
micro_setup_grid(grid, size);
micro_populate_grid(grid, size, full_stream);
bitmask = micro_apply_bitmask(grid, size);
/* Add format data */
format = 0;
switch(version) {
case 1: switch(ecc_level) {
case 1: format = 1; break;
case 2: format = 2; break;
}
break;
case 2: switch(ecc_level) {
case 1: format = 3; break;
case 2: format = 4; break;
}
break;
case 3: switch(ecc_level) {
case 1: format = 5; break;
case 2: format = 6; break;
case 3: format = 7; break;
}
break;
}
format_full = qr_annex_c1[(format << 2) + bitmask];
if(format_full & 0x4000) { grid[(8 * size) + 1] += 0x01; }
if(format_full & 0x2000) { grid[(8 * size) + 2] += 0x01; }
if(format_full & 0x1000) { grid[(8 * size) + 3] += 0x01; }
if(format_full & 0x800) { grid[(8 * size) + 4] += 0x01; }
if(format_full & 0x400) { grid[(8 * size) + 5] += 0x01; }
if(format_full & 0x200) { grid[(8 * size) + 6] += 0x01; }
if(format_full & 0x100) { grid[(8 * size) + 7] += 0x01; }
if(format_full & 0x80) { grid[(8 * size) + 8] += 0x01; }
if(format_full & 0x40) { grid[(7 * size) + 8] += 0x01; }
if(format_full & 0x20) { grid[(6 * size) + 8] += 0x01; }
if(format_full & 0x10) { grid[(5 * size) + 8] += 0x01; }
if(format_full & 0x08) { grid[(4 * size) + 8] += 0x01; }
if(format_full & 0x04) { grid[(3 * size) + 8] += 0x01; }
if(format_full & 0x02) { grid[(2 * size) + 8] += 0x01; }
if(format_full & 0x01) { grid[(1 * size) + 8] += 0x01; }
symbol->width = size;
symbol->rows = size;
for(i = 0; i < size; i++) {
for(j = 0; j < size; j++) {
if(grid[(i * size) + j] & 0x01) {
set_module(symbol, i, j);
}
}
symbol->row_height[i] = 1;
}
return 0;
}