from typing import Any, List, Mapping, Optional, Union from g4f import ChatCompletion from g4f.models import Model from g4f.Provider.base_provider import BaseProvider from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class G4FLLM(LLM): model: Union[Model, str] provider: Optional[type[BaseProvider]] = None auth: Optional[Union[str, bool]] = None create_kwargs: Optional[dict[str, Any]] = None @property def _llm_type(self) -> str: return "custom" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: create_kwargs = {} if self.create_kwargs is None else self.create_kwargs.copy() create_kwargs["model"] = self.model if self.provider is not None: create_kwargs["provider"] = self.provider if self.auth is not None: create_kwargs["auth"] = self.auth text = ChatCompletion.create( messages=[{"role": "user", "content": prompt}], **create_kwargs, ) # Generator -> str text = text if type(text) is str else "".join(text) if stop is not None: text = enforce_stop_tokens(text, stop) return text @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "provider": self.provider, "auth": self.auth, "create_kwargs": self.create_kwargs, }