LimeReport/3rdparty/zint-2.4.4/backend/code128.c

998 lines
25 KiB
C
Raw Normal View History

/* code128.c - Handles Code 128 and derivatives */
/*
libzint - the open source barcode library
Copyright (C) 2008 Robin Stuart <robin@zint.org.uk>
Bugfixes thanks to Christian Sakowski and BogDan Vatra
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#ifdef _MSC_VER
#include <malloc.h>
#endif
#include "common.h"
#include "gs1.h"
#define TRUE 1
#define FALSE 0
#define SHIFTA 90
#define LATCHA 91
#define SHIFTB 92
#define LATCHB 93
#define SHIFTC 94
#define LATCHC 95
#define AORB 96
#define ABORC 97
#define DPDSET "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ*"
static int list[2][170];
/* Code 128 tables checked against ISO/IEC 15417:2007 */
static char *C128Table[107] = {"212222", "222122", "222221", "121223", "121322", "131222", "122213",
"122312", "132212", "221213", "221312", "231212", "112232", "122132", "122231", "113222",
"123122", "123221", "223211", "221132", "221231", "213212", "223112", "312131", "311222",
"321122", "321221", "312212", "322112", "322211", "212123", "212321", "232121", "111323",
"131123", "131321", "112313", "132113", "132311", "211313", "231113", "231311", "112133",
"112331", "132131", "113123", "113321", "133121", "313121", "211331", "231131", "213113",
"213311", "213131", "311123", "311321", "331121", "312113", "312311", "332111", "314111",
"221411", "431111", "111224", "111422", "121124", "121421", "141122", "141221", "112214",
"112412", "122114", "122411", "142112", "142211", "241211", "221114", "413111", "241112",
"134111", "111242", "121142", "121241", "114212", "124112", "124211", "411212", "421112",
"421211", "212141", "214121", "412121", "111143", "111341", "131141", "114113", "114311",
"411113", "411311", "113141", "114131", "311141", "411131", "211412", "211214", "211232",
"2331112"};
/* Code 128 character encodation - Table 1 */
int parunmodd(unsigned char llyth)
{
int modd;
modd = 0;
if(llyth <= 31) { modd = SHIFTA; }
else if((llyth >= 48) && (llyth <= 57)) { modd = ABORC; }
else if(llyth <= 95) { modd = AORB; }
else if(llyth <= 127) { modd = SHIFTB; }
else if(llyth <= 159) { modd = SHIFTA; }
else if(llyth <= 223) { modd = AORB; }
else { modd = SHIFTB; }
return modd;
}
void grwp(int *indexliste)
{
int i, j;
/* bring together same type blocks */
if(*(indexliste) > 1) {
i = 1;
while(i < *(indexliste)) {
if(list[1][i - 1] == list[1][i]) {
/* bring together */
list[0][i - 1] = list[0][i - 1] + list[0][i];
j = i + 1;
/* decreace the list */
while(j < *(indexliste)) {
list[0][j - 1] = list[0][j];
list[1][j - 1] = list[1][j];
j++;
}
*(indexliste) = *(indexliste) - 1;
i--;
}
i++;
}
}
}
void dxsmooth(int *indexliste)
{ /* Implements rules from ISO 15417 Annex E */
int i, current, last, next, length;
for(i = 0; i < *(indexliste); i++) {
current = list[1][i];
length = list[0][i];
if(i != 0) { last = list[1][i - 1]; } else { last = FALSE; }
if(i != *(indexliste) - 1) { next = list[1][i + 1]; } else { next = FALSE; }
if(i == 0) { /* first block */
if((*(indexliste) == 1) && ((length == 2) && (current == ABORC))) { /* Rule 1a */ list[1][i] = LATCHC; }
if(current == ABORC) {
if(length >= 4) {/* Rule 1b */ list[1][i] = LATCHC; } else { list[1][i] = AORB; current = AORB; }
}
if(current == SHIFTA) { /* Rule 1c */ list[1][i] = LATCHA; }
if((current == AORB) && (next == SHIFTA)) { /* Rule 1c */ list[1][i] = LATCHA; current = LATCHA; }
if(current == AORB) { /* Rule 1d */ list[1][i] = LATCHB; }
} else {
if((current == ABORC) && (length >= 4)) { /* Rule 3 */ list[1][i] = LATCHC; current = LATCHC; }
if(current == ABORC) { list[1][i] = AORB; current = AORB; }
if((current == AORB) && (last == LATCHA)) { list[1][i] = LATCHA; current = LATCHA; }
if((current == AORB) && (last == LATCHB)) { list[1][i] = LATCHB; current = LATCHB; }
if((current == AORB) && (next == SHIFTA)) { list[1][i] = LATCHA; current = LATCHA; }
if((current == AORB) && (next == SHIFTB)) { list[1][i] = LATCHB; current = LATCHB; }
if(current == AORB) { list[1][i] = LATCHB; current = LATCHB; }
if((current == SHIFTA) && (length > 1)) { /* Rule 4 */ list[1][i] = LATCHA; current = LATCHA; }
if((current == SHIFTB) && (length > 1)) { /* Rule 5 */ list[1][i] = LATCHB; current = LATCHB; }
if((current == SHIFTA) && (last == LATCHA)) { list[1][i] = LATCHA; current = LATCHA; }
if((current == SHIFTB) && (last == LATCHB)) { list[1][i] = LATCHB; current = LATCHB; }
if((current == SHIFTA) && (last == LATCHC)) { list[1][i] = LATCHA; current = LATCHA; }
if((current == SHIFTB) && (last == LATCHC)) { list[1][i] = LATCHB; current = LATCHB; }
} /* Rule 2 is implimented elsewhere, Rule 6 is implied */
}
grwp(indexliste);
}
void c128_set_a(unsigned char source, char dest[], int values[], int *bar_chars)
{ /* Translate Code 128 Set A characters into barcodes */
/* This set handles all control characters NULL to US */
if(source > 127) {
if(source < 160) {
concat(dest, C128Table[(source - 128) + 64]);
values[(*bar_chars)] = (source - 128) + 64;
} else {
concat(dest, C128Table[(source - 128) - 32]);
values[(*bar_chars)] = (source - 128) - 32;
}
} else {
if(source < 32) {
concat(dest, C128Table[source + 64]);
values[(*bar_chars)] = source + 64;
} else {
concat(dest, C128Table[source - 32]);
values[(*bar_chars)] = source - 32;
}
}
(*bar_chars)++;
}
void c128_set_b(unsigned char source, char dest[], int values[], int *bar_chars)
{ /* Translate Code 128 Set B characters into barcodes */
/* This set handles all characters which are not part of long numbers and not control characters */
if(source > 127) {
concat(dest, C128Table[source - 32 - 128]);
values[(*bar_chars)] = source - 32 - 128;
} else {
concat(dest, C128Table[source - 32]);
values[(*bar_chars)] = source - 32;
}
(*bar_chars)++;
}
void c128_set_c(unsigned char source_a, unsigned char source_b, char dest[], int values[], int *bar_chars)
{ /* Translate Code 128 Set C characters into barcodes */
/* This set handles numbers in a compressed form */
int weight;
weight = (10 * ctoi(source_a)) + ctoi(source_b);
concat(dest, C128Table[weight]);
values[(*bar_chars)] = weight;
(*bar_chars)++;
}
int code_128(struct zint_symbol *symbol, unsigned char source[], int length)
{ /* Handle Code 128 and NVE-18 */
int i, j, k, e_count, values[170] = { 0 }, bar_characters, read, total_sum, nve_check;
int error_number, indexchaine, indexliste, sourcelen, f_state;
char set[170] = { ' ' }, fset[170] = { ' ' }, mode, last_set, last_fset, current_set = ' ';
float glyph_count;
char dest[1000];
error_number = 0;
strcpy(dest, "");
sourcelen = length;
j = 0;
e_count = 0;
bar_characters = 0;
nve_check = 0;
f_state = 0;
if(sourcelen > 160) {
/* This only blocks rediculously long input - the actual length of the
resulting barcode depends on the type of data, so this is trapped later */
strcpy(symbol->errtxt, "Input too long");
return ERROR_TOO_LONG;
}
/* Detect extended ASCII characters */
for(i = 0; i < sourcelen; i++) {
if(source[i] >= 128)
fset[i] = 'f';
}
fset[i] = '\0';
/* Decide when to latch to extended mode - Annex E note 3 */
j = 0;
for(i = 0; i < sourcelen; i++) {
if(fset[i] == 'f') {
j++;
} else {
j = 0;
}
if(j >= 5) {
for(k = i; k > (i - 5); k--) {
fset[k] = 'F';
}
}
if((j >= 3) && (i == (sourcelen - 1))) {
for(k = i; k > (i - 3); k--) {
fset[k] = 'F';
}
}
}
/* Decide if it is worth reverting to 646 encodation for a few characters as described in 4.3.4.2 (d) */
for(i = 1; i < sourcelen; i++) {
if((fset[i - 1] == 'F') && (fset[i] == ' ')) {
/* Detected a change from 8859-1 to 646 - count how long for */
for(j = 0; (fset[i + j] == ' ') && ((i + j) < sourcelen); j++);
if((j < 5) || ((j < 3) && ((i + j) == (sourcelen - 1)))) {
/* Uses the same figures recommended by Annex E note 3 */
/* Change to shifting back rather than latching back */
for(k = 0; k < j; k++) {
fset[i + k] = 'n';
}
}
}
}
/* Decide on mode using same system as PDF417 and rules of ISO 15417 Annex E */
indexliste = 0;
indexchaine = 0;
mode = parunmodd(source[indexchaine]);
if((symbol->symbology == BARCODE_CODE128B) && (mode == ABORC)) {
mode = AORB;
}
for(i = 0; i < 170; i++) {
list[0][i] = 0;
}
do {
list[1][indexliste] = mode;
while ((list[1][indexliste] == mode) && (indexchaine < sourcelen)) {
list[0][indexliste]++;
indexchaine++;
mode = parunmodd(source[indexchaine]);
if((symbol->symbology == BARCODE_CODE128B) && (mode == ABORC)) {
mode = AORB;
}
}
indexliste++;
} while (indexchaine < sourcelen);
dxsmooth(&indexliste);
/* Resolve odd length LATCHC blocks */
if((list[1][0] == LATCHC) && (list[0][0] & 1)) {
/* Rule 2 */
list[0][1]++;
list[0][0]--;
if(indexliste == 1) {
list[0][1] = 1;
list[1][1] = LATCHB;
indexliste = 2;
}
}
if(indexliste > 1) {
for(i = 1; i < indexliste; i++) {
if((list[1][i] == LATCHC) && (list[0][i] & 1)) {
/* Rule 3b */
list[0][i - 1]++;
list[0][i]--;
}
}
}
/* Put set data into set[] */
read = 0;
for(i = 0; i < indexliste; i++) {
for(j = 0; j < list[0][i]; j++) {
switch(list[1][i]) {
case SHIFTA: set[read] = 'a'; break;
case LATCHA: set[read] = 'A'; break;
case SHIFTB: set[read] = 'b'; break;
case LATCHB: set[read] = 'B'; break;
case LATCHC: set[read] = 'C'; break;
}
read++;
}
}
/* Adjust for strings which start with shift characters - make them latch instead */
if(set[0] == 'a') {
i = 0;
do {
set[i] = 'A';
i++;
} while (set[i] == 'a');
}
if(set[0] == 'b') {
i = 0;
do {
set[i] = 'B';
i++;
} while (set[i] == 'b');
}
/* Now we can calculate how long the barcode is going to be - and stop it from
being too long */
last_set = ' ';
last_fset = ' ';
glyph_count = 0.0;
for(i = 0; i < sourcelen; i++) {
if((set[i] == 'a') || (set[i] == 'b')) {
glyph_count = glyph_count + 1.0;
}
if((fset[i] == 'f') || (fset[i] == 'n')) {
glyph_count = glyph_count + 1.0;
}
if(((set[i] == 'A') || (set[i] == 'B')) || (set[i] == 'C')) {
if(set[i] != last_set) {
last_set = set[i];
glyph_count = glyph_count + 1.0;
}
}
if(i == 0) {
if(fset[i] == 'F') {
last_fset = 'F';
glyph_count = glyph_count + 2.0;
}
} else {
if((fset[i] == 'F') && (fset[i - 1] != 'F')) {
last_fset = 'F';
glyph_count = glyph_count + 2.0;
}
if((fset[i] != 'F') && (fset[i - 1] == 'F')) {
last_fset = ' ';
glyph_count = glyph_count + 2.0;
}
}
if(set[i] == 'C') {
glyph_count = glyph_count + 0.5;
} else {
glyph_count = glyph_count + 1.0;
}
}
if(glyph_count > 80.0) {
strcpy(symbol->errtxt, "Input too long");
return ERROR_TOO_LONG;
}
/* So now we know what start character to use - we can get on with it! */
if(symbol->output_options & READER_INIT) {
/* Reader Initialisation mode */
switch(set[0]) {
case 'A': /* Start A */
concat(dest, C128Table[103]);
values[0] = 103;
current_set = 'A';
concat(dest, C128Table[96]); /* FNC3 */
values[1] = 96;
bar_characters++;
break;
case 'B': /* Start B */
concat(dest, C128Table[104]);
values[0] = 104;
current_set = 'B';
concat(dest, C128Table[96]); /* FNC3 */
values[1] = 96;
bar_characters++;
break;
case 'C': /* Start C */
concat(dest, C128Table[104]); /* Start B */
values[0] = 105;
concat(dest, C128Table[96]); /* FNC3 */
values[1] = 96;
concat(dest, C128Table[99]); /* Code C */
values[2] = 99;
bar_characters += 2;
current_set = 'C';
break;
}
} else {
/* Normal mode */
switch(set[0]) {
case 'A': /* Start A */
concat(dest, C128Table[103]);
values[0] = 103;
current_set = 'A';
break;
case 'B': /* Start B */
concat(dest, C128Table[104]);
values[0] = 104;
current_set = 'B';
break;
case 'C': /* Start C */
concat(dest, C128Table[105]);
values[0] = 105;
current_set = 'C';
break;
}
}
bar_characters++;
last_set = set[0];
if(fset[0] == 'F') {
switch(current_set) {
case 'A':
concat(dest, C128Table[101]);
concat(dest, C128Table[101]);
values[bar_characters] = 101;
values[bar_characters + 1] = 101;
break;
case 'B':
concat(dest, C128Table[100]);
concat(dest, C128Table[100]);
values[bar_characters] = 100;
values[bar_characters + 1] = 100;
break;
}
bar_characters += 2;
f_state = 1;
}
/* Encode the data */
read = 0;
do {
if((read != 0) && (set[read] != current_set))
{ /* Latch different code set */
switch(set[read])
{
case 'A': concat(dest, C128Table[101]);
values[bar_characters] = 101;
bar_characters++;
current_set = 'A';
break;
case 'B': concat(dest, C128Table[100]);
values[bar_characters] = 100;
bar_characters++;
current_set = 'B';
break;
case 'C': concat(dest, C128Table[99]);
values[bar_characters] = 99;
bar_characters++;
current_set = 'C';
break;
}
}
if(read != 0) {
if((fset[read] == 'F') && (f_state == 0)) {
/* Latch beginning of extended mode */
switch(current_set) {
case 'A':
concat(dest, C128Table[101]);
concat(dest, C128Table[101]);
values[bar_characters] = 101;
values[bar_characters + 1] = 101;
break;
case 'B':
concat(dest, C128Table[100]);
concat(dest, C128Table[100]);
values[bar_characters] = 100;
values[bar_characters + 1] = 100;
break;
}
bar_characters += 2;
f_state = 1;
}
if((fset[read] == ' ') && (f_state == 1)) {
/* Latch end of extended mode */
switch(current_set) {
case 'A':
concat(dest, C128Table[101]);
concat(dest, C128Table[101]);
values[bar_characters] = 101;
values[bar_characters + 1] = 101;
break;
case 'B':
concat(dest, C128Table[100]);
concat(dest, C128Table[100]);
values[bar_characters] = 100;
values[bar_characters + 1] = 100;
break;
}
bar_characters += 2;
f_state = 0;
}
}
if((fset[read] == 'f') || (fset[read] == 'n')) {
/* Shift to or from extended mode */
switch(current_set) {
case 'A':
concat(dest, C128Table[101]); /* FNC 4 */
values[bar_characters] = 101;
break;
case 'B':
concat(dest, C128Table[100]); /* FNC 4 */
values[bar_characters] = 100;
break;
}
bar_characters++;
}
if((set[read] == 'a') || (set[read] == 'b')) {
/* Insert shift character */
concat(dest, C128Table[98]);
values[bar_characters] = 98;
bar_characters++;
}
switch(set[read])
{ /* Encode data characters */
case 'a':
case 'A': c128_set_a(source[read], dest, values, &bar_characters);
read++;
break;
case 'b':
case 'B': c128_set_b(source[read], dest, values, &bar_characters);
read++;
break;
case 'C': c128_set_c(source[read], source[read + 1], dest, values, &bar_characters);
read += 2;
break;
}
} while (read < sourcelen);
/* check digit calculation */
total_sum = 0;
/*for(i = 0; i < bar_characters; i++) {
printf("%d\n", values[i]);
}*/
for(i = 0; i < bar_characters; i++)
{
if(i > 0)
{
values[i] *= i;
}
total_sum += values[i];
}
concat(dest, C128Table[total_sum%103]);
/* Stop character */
concat(dest, C128Table[106]);
expand(symbol, dest);
return error_number;
}
int ean_128(struct zint_symbol *symbol, unsigned char source[], int length)
{ /* Handle EAN-128 (Now known as GS1-128) */
int i, j, e_count, values[170], bar_characters, read, total_sum;
int error_number, indexchaine, indexliste;
char set[170], mode, last_set;
float glyph_count;
char dest[1000];
int separator_row, linkage_flag, c_count;
#ifndef _MSC_VER
char reduced[length + 1];
#else
char* reduced = (char*)_alloca(length + 1);
#endif
error_number = 0;
strcpy(dest, "");
linkage_flag = 0;
j = 0;
e_count = 0;
bar_characters = 0;
separator_row = 0;
memset(values, 0, sizeof(values));
memset(set, ' ', sizeof(set));
if(length > 160) {
/* This only blocks rediculously long input - the actual length of the
resulting barcode depends on the type of data, so this is trapped later */
strcpy(symbol->errtxt, "Input too long");
return ERROR_TOO_LONG;
}
for(i = 0; i < length; i++) {
if(source[i] == '\0') {
/* Null characters not allowed! */
strcpy(symbol->errtxt, "NULL character in input data");
return ERROR_INVALID_DATA1;
}
}
/* if part of a composite symbol make room for the separator pattern */
if(symbol->symbology == BARCODE_EAN128_CC) {
separator_row = symbol->rows;
symbol->row_height[symbol->rows] = 1;
symbol->rows += 1;
}
if(symbol->input_mode != GS1_MODE) {
/* GS1 data has not been checked yet */
error_number = gs1_verify(symbol, source, length, reduced);
if(error_number != 0) { return error_number; }
}
/* Decide on mode using same system as PDF417 and rules of ISO 15417 Annex E */
indexliste = 0;
indexchaine = 0;
mode = parunmodd(reduced[indexchaine]);
if(reduced[indexchaine] == '[') {
mode = ABORC;
}
for(i = 0; i < 170; i++) {
list[0][i] = 0;
}
do {
list[1][indexliste] = mode;
while ((list[1][indexliste] == mode) && (indexchaine < strlen(reduced))) {
list[0][indexliste]++;
indexchaine++;
mode = parunmodd(reduced[indexchaine]);
if(reduced[indexchaine] == '[') { mode = ABORC; }
}
indexliste++;
} while (indexchaine < strlen(reduced));
dxsmooth(&indexliste);
/* Put set data into set[] */
read = 0;
for(i = 0; i < indexliste; i++) {
for(j = 0; j < list[0][i]; j++) {
switch(list[1][i]) {
case SHIFTA: set[read] = 'a'; break;
case LATCHA: set[read] = 'A'; break;
case SHIFTB: set[read] = 'b'; break;
case LATCHB: set[read] = 'B'; break;
case LATCHC: set[read] = 'C'; break;
}
read++;
}
}
/* Watch out for odd-length Mode C blocks */
c_count = 0;
for(i = 0; i < read; i++) {
if(set[i] == 'C') {
if(reduced[i] == '[') {
if(c_count & 1) {
if((i - c_count) != 0) {
set[i - c_count] = 'B';
} else {
set[i - 1] = 'B';
}
}
c_count = 0;
} else {
c_count++;
}
} else {
if(c_count & 1) {
if((i - c_count) != 0) {
set[i - c_count] = 'B';
} else {
set[i - 1] = 'B';
}
}
c_count = 0;
}
}
if(c_count & 1) {
if((i - c_count) != 0) {
set[i - c_count] = 'B';
} else {
set[i - 1] = 'B';
}
}
for(i = 1; i < read - 1; i++) {
if((set[i] == 'C') && ((set[i - 1] == 'B') && (set[i + 1] == 'B'))) {
set[i] = 'B';
}
}
/* for(i = 0; i < read; i++) {
printf("char %c mode %c\n", reduced[i], set[i]);
} */
/* Now we can calculate how long the barcode is going to be - and stop it from
being too long */
last_set = ' ';
glyph_count = 0.0;
for(i = 0; i < strlen(reduced); i++) {
if((set[i] == 'a') || (set[i] == 'b')) {
glyph_count = glyph_count + 1.0;
}
if(((set[i] == 'A') || (set[i] == 'B')) || (set[i] == 'C')) {
if(set[i] != last_set) {
last_set = set[i];
glyph_count = glyph_count + 1.0;
}
}
if((set[i] == 'C') && (reduced[i] != '[')) {
glyph_count = glyph_count + 0.5;
} else {
glyph_count = glyph_count + 1.0;
}
}
if(glyph_count > 80.0) {
strcpy(symbol->errtxt, "Input too long");
return ERROR_TOO_LONG;
}
/* So now we know what start character to use - we can get on with it! */
switch(set[0])
{
case 'A': /* Start A */
concat(dest, C128Table[103]);
values[0] = 103;
break;
case 'B': /* Start B */
concat(dest, C128Table[104]);
values[0] = 104;
break;
case 'C': /* Start C */
concat(dest, C128Table[105]);
values[0] = 105;
break;
}
bar_characters++;
concat(dest, C128Table[102]);
values[1] = 102;
bar_characters++;
/* Encode the data */
read = 0;
do {
if((read != 0) && (set[read] != set[read - 1]))
{ /* Latch different code set */
switch(set[read])
{
case 'A': concat(dest, C128Table[101]);
values[bar_characters] = 101;
bar_characters++;
break;
case 'B': concat(dest, C128Table[100]);
values[bar_characters] = 100;
bar_characters++;
break;
case 'C': concat(dest, C128Table[99]);
values[bar_characters] = 99;
bar_characters++;
break;
}
}
if((set[read] == 'a') || (set[read] == 'b')) {
/* Insert shift character */
concat(dest, C128Table[98]);
values[bar_characters] = 98;
bar_characters++;
}
if(reduced[read] != '[') {
switch(set[read])
{ /* Encode data characters */
case 'A':
case 'a':
c128_set_a(reduced[read], dest, values, &bar_characters);
read++;
break;
case 'B':
case 'b':
c128_set_b(reduced[read], dest, values, &bar_characters);
read++;
break;
case 'C':
c128_set_c(reduced[read], reduced[read + 1], dest, values, &bar_characters);
read += 2;
break;
}
} else {
concat(dest, C128Table[102]);
values[bar_characters] = 102;
bar_characters++;
read++;
}
} while (read < strlen(reduced));
/* "...note that the linkage flag is an extra code set character between
the last data character and the Symbol Check Character" (GS1 Specification) */
/* Linkage flags in GS1-128 are determined by ISO/IEC 24723 section 7.4 */
switch(symbol->option_1) {
case 1:
case 2:
/* CC-A or CC-B 2D component */
switch(set[strlen(reduced) - 1]) {
case 'A': linkage_flag = 100; break;
case 'B': linkage_flag = 99; break;
case 'C': linkage_flag = 101; break;
}
break;
case 3:
/* CC-C 2D component */
switch(set[strlen(reduced) - 1]) {
case 'A': linkage_flag = 99; break;
case 'B': linkage_flag = 101; break;
case 'C': linkage_flag = 100; break;
}
break;
}
if(linkage_flag != 0) {
concat(dest, C128Table[linkage_flag]);
values[bar_characters] = linkage_flag;
bar_characters++;
}
/*for(i = 0; i < bar_characters; i++) {
printf("[%d] ", values[i]);
}
printf("\n");*/
/* check digit calculation */
total_sum = 0;
for(i = 0; i < bar_characters; i++)
{
if(i > 0)
{
values[i] *= i;
}
total_sum += values[i];
}
concat(dest, C128Table[total_sum%103]);
values[bar_characters] = total_sum % 103;
bar_characters++;
/* Stop character */
concat(dest, C128Table[106]);
values[bar_characters] = 106;
bar_characters++;
expand(symbol, dest);
/* Add the separator pattern for composite symbols */
if(symbol->symbology == BARCODE_EAN128_CC) {
for(i = 0; i < symbol->width; i++) {
if(!(module_is_set(symbol, separator_row + 1, i))) {
set_module(symbol, separator_row, i);
}
}
}
for(i = 0; i < length; i++) {
if((source[i] != '[') && (source[i] != ']')) {
symbol->text[i] = source[i];
}
if(source[i] == '[') {
symbol->text[i] = '(';
}
if(source[i] == ']') {
symbol->text[i] = ')';
}
}
return error_number;
}
int nve_18(struct zint_symbol *symbol, unsigned char source[], int length)
{
/* Add check digit if encoding an NVE18 symbol */
int error_number, zeroes, i, nve_check, total_sum, sourcelen;
unsigned char ean128_equiv[25];
memset(ean128_equiv, 0, 25);
sourcelen = length;
if(sourcelen > 17) {
strcpy(symbol->errtxt, "Input too long");
return ERROR_TOO_LONG;
}
error_number = is_sane(NEON, source, length);
if(error_number == ERROR_INVALID_DATA1) {
strcpy(symbol->errtxt, "Invalid characters in data");
return error_number;
}
zeroes = 17 - sourcelen;
strcpy((char *)ean128_equiv, "[00]");
memset(ean128_equiv + 4, '0', zeroes);
strcpy((char*)ean128_equiv + 4 + zeroes, (char*)source);
total_sum = 0;
for(i = sourcelen - 1; i >= 0; i--)
{
total_sum += ctoi(source[i]);
if(!(i & 1)) {
total_sum += 2 * ctoi(source[i]);
}
}
nve_check = 10 - total_sum % 10;
if(nve_check == 10) { nve_check = 0; }
ean128_equiv[21] = itoc(nve_check);
ean128_equiv[22] = '\0';
error_number = ean_128(symbol, ean128_equiv, ustrlen(ean128_equiv));
return error_number;
}
int ean_14(struct zint_symbol *symbol, unsigned char source[], int length)
{
/* EAN-14 - A version of EAN-128 */
int i, count, check_digit;
int error_number, zeroes;
unsigned char ean128_equiv[20];
if(length > 13) {
strcpy(symbol->errtxt, "Input wrong length");
return ERROR_TOO_LONG;
}
error_number = is_sane(NEON, source, length);
if(error_number == ERROR_INVALID_DATA1) {
strcpy(symbol->errtxt, "Invalid character in data");
return error_number;
}
zeroes = 13 - length;
strcpy((char*)ean128_equiv, "[01]");
memset(ean128_equiv + 4, '0', zeroes);
ustrcpy(ean128_equiv + 4 + zeroes, source);
count = 0;
for (i = length - 1; i >= 0; i--) {
count += ctoi(source[i]);
if (!(i & 1)) {
count += 2 * ctoi(source[i]);
}
}
check_digit = 10 - (count % 10);
if (check_digit == 10) { check_digit = 0; }
ean128_equiv[17] = itoc(check_digit);
ean128_equiv[18] = '\0';
error_number = ean_128(symbol, ean128_equiv, ustrlen(ean128_equiv));
return error_number;
}