/* code128.c - Handles Code 128 and derivatives */ /* libzint - the open source barcode library Copyright (C) 2008 Robin Stuart <robin@zint.org.uk> Bugfixes thanks to Christian Sakowski and BogDan Vatra This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <stdio.h> #include <string.h> #include <stdlib.h> #ifdef _MSC_VER #include <malloc.h> #endif #include "common.h" #include "gs1.h" #define TRUE 1 #define FALSE 0 #define SHIFTA 90 #define LATCHA 91 #define SHIFTB 92 #define LATCHB 93 #define SHIFTC 94 #define LATCHC 95 #define AORB 96 #define ABORC 97 #define DPDSET "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ*" static int list[2][170]; /* Code 128 tables checked against ISO/IEC 15417:2007 */ static char *C128Table[107] = {"212222", "222122", "222221", "121223", "121322", "131222", "122213", "122312", "132212", "221213", "221312", "231212", "112232", "122132", "122231", "113222", "123122", "123221", "223211", "221132", "221231", "213212", "223112", "312131", "311222", "321122", "321221", "312212", "322112", "322211", "212123", "212321", "232121", "111323", "131123", "131321", "112313", "132113", "132311", "211313", "231113", "231311", "112133", "112331", "132131", "113123", "113321", "133121", "313121", "211331", "231131", "213113", "213311", "213131", "311123", "311321", "331121", "312113", "312311", "332111", "314111", "221411", "431111", "111224", "111422", "121124", "121421", "141122", "141221", "112214", "112412", "122114", "122411", "142112", "142211", "241211", "221114", "413111", "241112", "134111", "111242", "121142", "121241", "114212", "124112", "124211", "411212", "421112", "421211", "212141", "214121", "412121", "111143", "111341", "131141", "114113", "114311", "411113", "411311", "113141", "114131", "311141", "411131", "211412", "211214", "211232", "2331112"}; /* Code 128 character encodation - Table 1 */ int parunmodd(unsigned char llyth) { int modd; modd = 0; if(llyth <= 31) { modd = SHIFTA; } else if((llyth >= 48) && (llyth <= 57)) { modd = ABORC; } else if(llyth <= 95) { modd = AORB; } else if(llyth <= 127) { modd = SHIFTB; } else if(llyth <= 159) { modd = SHIFTA; } else if(llyth <= 223) { modd = AORB; } else { modd = SHIFTB; } return modd; } void grwp(int *indexliste) { int i, j; /* bring together same type blocks */ if(*(indexliste) > 1) { i = 1; while(i < *(indexliste)) { if(list[1][i - 1] == list[1][i]) { /* bring together */ list[0][i - 1] = list[0][i - 1] + list[0][i]; j = i + 1; /* decreace the list */ while(j < *(indexliste)) { list[0][j - 1] = list[0][j]; list[1][j - 1] = list[1][j]; j++; } *(indexliste) = *(indexliste) - 1; i--; } i++; } } } void dxsmooth(int *indexliste) { /* Implements rules from ISO 15417 Annex E */ int i, current, last, next, length; for(i = 0; i < *(indexliste); i++) { current = list[1][i]; length = list[0][i]; if(i != 0) { last = list[1][i - 1]; } else { last = FALSE; } if(i != *(indexliste) - 1) { next = list[1][i + 1]; } else { next = FALSE; } if(i == 0) { /* first block */ if((*(indexliste) == 1) && ((length == 2) && (current == ABORC))) { /* Rule 1a */ list[1][i] = LATCHC; } if(current == ABORC) { if(length >= 4) {/* Rule 1b */ list[1][i] = LATCHC; } else { list[1][i] = AORB; current = AORB; } } if(current == SHIFTA) { /* Rule 1c */ list[1][i] = LATCHA; } if((current == AORB) && (next == SHIFTA)) { /* Rule 1c */ list[1][i] = LATCHA; current = LATCHA; } if(current == AORB) { /* Rule 1d */ list[1][i] = LATCHB; } } else { if((current == ABORC) && (length >= 4)) { /* Rule 3 */ list[1][i] = LATCHC; current = LATCHC; } if(current == ABORC) { list[1][i] = AORB; current = AORB; } if((current == AORB) && (last == LATCHA)) { list[1][i] = LATCHA; current = LATCHA; } if((current == AORB) && (last == LATCHB)) { list[1][i] = LATCHB; current = LATCHB; } if((current == AORB) && (next == SHIFTA)) { list[1][i] = LATCHA; current = LATCHA; } if((current == AORB) && (next == SHIFTB)) { list[1][i] = LATCHB; current = LATCHB; } if(current == AORB) { list[1][i] = LATCHB; current = LATCHB; } if((current == SHIFTA) && (length > 1)) { /* Rule 4 */ list[1][i] = LATCHA; current = LATCHA; } if((current == SHIFTB) && (length > 1)) { /* Rule 5 */ list[1][i] = LATCHB; current = LATCHB; } if((current == SHIFTA) && (last == LATCHA)) { list[1][i] = LATCHA; current = LATCHA; } if((current == SHIFTB) && (last == LATCHB)) { list[1][i] = LATCHB; current = LATCHB; } if((current == SHIFTA) && (last == LATCHC)) { list[1][i] = LATCHA; current = LATCHA; } if((current == SHIFTB) && (last == LATCHC)) { list[1][i] = LATCHB; current = LATCHB; } } /* Rule 2 is implimented elsewhere, Rule 6 is implied */ } grwp(indexliste); } void c128_set_a(unsigned char source, char dest[], int values[], int *bar_chars) { /* Translate Code 128 Set A characters into barcodes */ /* This set handles all control characters NULL to US */ if(source > 127) { if(source < 160) { concat(dest, C128Table[(source - 128) + 64]); values[(*bar_chars)] = (source - 128) + 64; } else { concat(dest, C128Table[(source - 128) - 32]); values[(*bar_chars)] = (source - 128) - 32; } } else { if(source < 32) { concat(dest, C128Table[source + 64]); values[(*bar_chars)] = source + 64; } else { concat(dest, C128Table[source - 32]); values[(*bar_chars)] = source - 32; } } (*bar_chars)++; } void c128_set_b(unsigned char source, char dest[], int values[], int *bar_chars) { /* Translate Code 128 Set B characters into barcodes */ /* This set handles all characters which are not part of long numbers and not control characters */ if(source > 127) { concat(dest, C128Table[source - 32 - 128]); values[(*bar_chars)] = source - 32 - 128; } else { concat(dest, C128Table[source - 32]); values[(*bar_chars)] = source - 32; } (*bar_chars)++; } void c128_set_c(unsigned char source_a, unsigned char source_b, char dest[], int values[], int *bar_chars) { /* Translate Code 128 Set C characters into barcodes */ /* This set handles numbers in a compressed form */ int weight; weight = (10 * ctoi(source_a)) + ctoi(source_b); concat(dest, C128Table[weight]); values[(*bar_chars)] = weight; (*bar_chars)++; } int code_128(struct zint_symbol *symbol, unsigned char source[], int length) { /* Handle Code 128 and NVE-18 */ int i, j, k, e_count, values[170] = { 0 }, bar_characters, read, total_sum, nve_check; int error_number, indexchaine, indexliste, sourcelen, f_state; char set[170] = { ' ' }, fset[170] = { ' ' }, mode, last_set, last_fset, current_set = ' '; float glyph_count; char dest[1000]; error_number = 0; strcpy(dest, ""); sourcelen = length; j = 0; e_count = 0; bar_characters = 0; nve_check = 0; f_state = 0; if(sourcelen > 160) { /* This only blocks rediculously long input - the actual length of the resulting barcode depends on the type of data, so this is trapped later */ strcpy(symbol->errtxt, "Input too long"); return ERROR_TOO_LONG; } /* Detect extended ASCII characters */ for(i = 0; i < sourcelen; i++) { if(source[i] >= 128) fset[i] = 'f'; } fset[i] = '\0'; /* Decide when to latch to extended mode - Annex E note 3 */ j = 0; for(i = 0; i < sourcelen; i++) { if(fset[i] == 'f') { j++; } else { j = 0; } if(j >= 5) { for(k = i; k > (i - 5); k--) { fset[k] = 'F'; } } if((j >= 3) && (i == (sourcelen - 1))) { for(k = i; k > (i - 3); k--) { fset[k] = 'F'; } } } /* Decide if it is worth reverting to 646 encodation for a few characters as described in 4.3.4.2 (d) */ for(i = 1; i < sourcelen; i++) { if((fset[i - 1] == 'F') && (fset[i] == ' ')) { /* Detected a change from 8859-1 to 646 - count how long for */ for(j = 0; (fset[i + j] == ' ') && ((i + j) < sourcelen); j++); if((j < 5) || ((j < 3) && ((i + j) == (sourcelen - 1)))) { /* Uses the same figures recommended by Annex E note 3 */ /* Change to shifting back rather than latching back */ for(k = 0; k < j; k++) { fset[i + k] = 'n'; } } } } /* Decide on mode using same system as PDF417 and rules of ISO 15417 Annex E */ indexliste = 0; indexchaine = 0; mode = parunmodd(source[indexchaine]); if((symbol->symbology == BARCODE_CODE128B) && (mode == ABORC)) { mode = AORB; } for(i = 0; i < 170; i++) { list[0][i] = 0; } do { list[1][indexliste] = mode; while ((list[1][indexliste] == mode) && (indexchaine < sourcelen)) { list[0][indexliste]++; indexchaine++; mode = parunmodd(source[indexchaine]); if((symbol->symbology == BARCODE_CODE128B) && (mode == ABORC)) { mode = AORB; } } indexliste++; } while (indexchaine < sourcelen); dxsmooth(&indexliste); /* Resolve odd length LATCHC blocks */ if((list[1][0] == LATCHC) && (list[0][0] & 1)) { /* Rule 2 */ list[0][1]++; list[0][0]--; if(indexliste == 1) { list[0][1] = 1; list[1][1] = LATCHB; indexliste = 2; } } if(indexliste > 1) { for(i = 1; i < indexliste; i++) { if((list[1][i] == LATCHC) && (list[0][i] & 1)) { /* Rule 3b */ list[0][i - 1]++; list[0][i]--; } } } /* Put set data into set[] */ read = 0; for(i = 0; i < indexliste; i++) { for(j = 0; j < list[0][i]; j++) { switch(list[1][i]) { case SHIFTA: set[read] = 'a'; break; case LATCHA: set[read] = 'A'; break; case SHIFTB: set[read] = 'b'; break; case LATCHB: set[read] = 'B'; break; case LATCHC: set[read] = 'C'; break; } read++; } } /* Adjust for strings which start with shift characters - make them latch instead */ if(set[0] == 'a') { i = 0; do { set[i] = 'A'; i++; } while (set[i] == 'a'); } if(set[0] == 'b') { i = 0; do { set[i] = 'B'; i++; } while (set[i] == 'b'); } /* Now we can calculate how long the barcode is going to be - and stop it from being too long */ last_set = ' '; last_fset = ' '; glyph_count = 0.0; for(i = 0; i < sourcelen; i++) { if((set[i] == 'a') || (set[i] == 'b')) { glyph_count = glyph_count + 1.0; } if((fset[i] == 'f') || (fset[i] == 'n')) { glyph_count = glyph_count + 1.0; } if(((set[i] == 'A') || (set[i] == 'B')) || (set[i] == 'C')) { if(set[i] != last_set) { last_set = set[i]; glyph_count = glyph_count + 1.0; } } if(i == 0) { if(fset[i] == 'F') { last_fset = 'F'; glyph_count = glyph_count + 2.0; } } else { if((fset[i] == 'F') && (fset[i - 1] != 'F')) { last_fset = 'F'; glyph_count = glyph_count + 2.0; } if((fset[i] != 'F') && (fset[i - 1] == 'F')) { last_fset = ' '; glyph_count = glyph_count + 2.0; } } if(set[i] == 'C') { glyph_count = glyph_count + 0.5; } else { glyph_count = glyph_count + 1.0; } } if(glyph_count > 80.0) { strcpy(symbol->errtxt, "Input too long"); return ERROR_TOO_LONG; } /* So now we know what start character to use - we can get on with it! */ if(symbol->output_options & READER_INIT) { /* Reader Initialisation mode */ switch(set[0]) { case 'A': /* Start A */ concat(dest, C128Table[103]); values[0] = 103; current_set = 'A'; concat(dest, C128Table[96]); /* FNC3 */ values[1] = 96; bar_characters++; break; case 'B': /* Start B */ concat(dest, C128Table[104]); values[0] = 104; current_set = 'B'; concat(dest, C128Table[96]); /* FNC3 */ values[1] = 96; bar_characters++; break; case 'C': /* Start C */ concat(dest, C128Table[104]); /* Start B */ values[0] = 105; concat(dest, C128Table[96]); /* FNC3 */ values[1] = 96; concat(dest, C128Table[99]); /* Code C */ values[2] = 99; bar_characters += 2; current_set = 'C'; break; } } else { /* Normal mode */ switch(set[0]) { case 'A': /* Start A */ concat(dest, C128Table[103]); values[0] = 103; current_set = 'A'; break; case 'B': /* Start B */ concat(dest, C128Table[104]); values[0] = 104; current_set = 'B'; break; case 'C': /* Start C */ concat(dest, C128Table[105]); values[0] = 105; current_set = 'C'; break; } } bar_characters++; last_set = set[0]; if(fset[0] == 'F') { switch(current_set) { case 'A': concat(dest, C128Table[101]); concat(dest, C128Table[101]); values[bar_characters] = 101; values[bar_characters + 1] = 101; break; case 'B': concat(dest, C128Table[100]); concat(dest, C128Table[100]); values[bar_characters] = 100; values[bar_characters + 1] = 100; break; } bar_characters += 2; f_state = 1; } /* Encode the data */ read = 0; do { if((read != 0) && (set[read] != current_set)) { /* Latch different code set */ switch(set[read]) { case 'A': concat(dest, C128Table[101]); values[bar_characters] = 101; bar_characters++; current_set = 'A'; break; case 'B': concat(dest, C128Table[100]); values[bar_characters] = 100; bar_characters++; current_set = 'B'; break; case 'C': concat(dest, C128Table[99]); values[bar_characters] = 99; bar_characters++; current_set = 'C'; break; } } if(read != 0) { if((fset[read] == 'F') && (f_state == 0)) { /* Latch beginning of extended mode */ switch(current_set) { case 'A': concat(dest, C128Table[101]); concat(dest, C128Table[101]); values[bar_characters] = 101; values[bar_characters + 1] = 101; break; case 'B': concat(dest, C128Table[100]); concat(dest, C128Table[100]); values[bar_characters] = 100; values[bar_characters + 1] = 100; break; } bar_characters += 2; f_state = 1; } if((fset[read] == ' ') && (f_state == 1)) { /* Latch end of extended mode */ switch(current_set) { case 'A': concat(dest, C128Table[101]); concat(dest, C128Table[101]); values[bar_characters] = 101; values[bar_characters + 1] = 101; break; case 'B': concat(dest, C128Table[100]); concat(dest, C128Table[100]); values[bar_characters] = 100; values[bar_characters + 1] = 100; break; } bar_characters += 2; f_state = 0; } } if((fset[read] == 'f') || (fset[read] == 'n')) { /* Shift to or from extended mode */ switch(current_set) { case 'A': concat(dest, C128Table[101]); /* FNC 4 */ values[bar_characters] = 101; break; case 'B': concat(dest, C128Table[100]); /* FNC 4 */ values[bar_characters] = 100; break; } bar_characters++; } if((set[read] == 'a') || (set[read] == 'b')) { /* Insert shift character */ concat(dest, C128Table[98]); values[bar_characters] = 98; bar_characters++; } switch(set[read]) { /* Encode data characters */ case 'a': case 'A': c128_set_a(source[read], dest, values, &bar_characters); read++; break; case 'b': case 'B': c128_set_b(source[read], dest, values, &bar_characters); read++; break; case 'C': c128_set_c(source[read], source[read + 1], dest, values, &bar_characters); read += 2; break; } } while (read < sourcelen); /* check digit calculation */ total_sum = 0; /*for(i = 0; i < bar_characters; i++) { printf("%d\n", values[i]); }*/ for(i = 0; i < bar_characters; i++) { if(i > 0) { values[i] *= i; } total_sum += values[i]; } concat(dest, C128Table[total_sum%103]); /* Stop character */ concat(dest, C128Table[106]); expand(symbol, dest); return error_number; } int ean_128(struct zint_symbol *symbol, unsigned char source[], int length) { /* Handle EAN-128 (Now known as GS1-128) */ int i, j, e_count, values[170], bar_characters, read, total_sum; int error_number, indexchaine, indexliste; char set[170], mode, last_set; float glyph_count; char dest[1000]; int separator_row, linkage_flag, c_count; #ifndef _MSC_VER char reduced[length + 1]; #else char* reduced = (char*)_alloca(length + 1); #endif error_number = 0; strcpy(dest, ""); linkage_flag = 0; j = 0; e_count = 0; bar_characters = 0; separator_row = 0; memset(values, 0, sizeof(values)); memset(set, ' ', sizeof(set)); if(length > 160) { /* This only blocks rediculously long input - the actual length of the resulting barcode depends on the type of data, so this is trapped later */ strcpy(symbol->errtxt, "Input too long"); return ERROR_TOO_LONG; } for(i = 0; i < length; i++) { if(source[i] == '\0') { /* Null characters not allowed! */ strcpy(symbol->errtxt, "NULL character in input data"); return ERROR_INVALID_DATA1; } } /* if part of a composite symbol make room for the separator pattern */ if(symbol->symbology == BARCODE_EAN128_CC) { separator_row = symbol->rows; symbol->row_height[symbol->rows] = 1; symbol->rows += 1; } if(symbol->input_mode != GS1_MODE) { /* GS1 data has not been checked yet */ error_number = gs1_verify(symbol, source, length, reduced); if(error_number != 0) { return error_number; } } /* Decide on mode using same system as PDF417 and rules of ISO 15417 Annex E */ indexliste = 0; indexchaine = 0; mode = parunmodd(reduced[indexchaine]); if(reduced[indexchaine] == '[') { mode = ABORC; } for(i = 0; i < 170; i++) { list[0][i] = 0; } do { list[1][indexliste] = mode; while ((list[1][indexliste] == mode) && (indexchaine < strlen(reduced))) { list[0][indexliste]++; indexchaine++; mode = parunmodd(reduced[indexchaine]); if(reduced[indexchaine] == '[') { mode = ABORC; } } indexliste++; } while (indexchaine < strlen(reduced)); dxsmooth(&indexliste); /* Put set data into set[] */ read = 0; for(i = 0; i < indexliste; i++) { for(j = 0; j < list[0][i]; j++) { switch(list[1][i]) { case SHIFTA: set[read] = 'a'; break; case LATCHA: set[read] = 'A'; break; case SHIFTB: set[read] = 'b'; break; case LATCHB: set[read] = 'B'; break; case LATCHC: set[read] = 'C'; break; } read++; } } /* Watch out for odd-length Mode C blocks */ c_count = 0; for(i = 0; i < read; i++) { if(set[i] == 'C') { if(reduced[i] == '[') { if(c_count & 1) { if((i - c_count) != 0) { set[i - c_count] = 'B'; } else { set[i - 1] = 'B'; } } c_count = 0; } else { c_count++; } } else { if(c_count & 1) { if((i - c_count) != 0) { set[i - c_count] = 'B'; } else { set[i - 1] = 'B'; } } c_count = 0; } } if(c_count & 1) { if((i - c_count) != 0) { set[i - c_count] = 'B'; } else { set[i - 1] = 'B'; } } for(i = 1; i < read - 1; i++) { if((set[i] == 'C') && ((set[i - 1] == 'B') && (set[i + 1] == 'B'))) { set[i] = 'B'; } } /* for(i = 0; i < read; i++) { printf("char %c mode %c\n", reduced[i], set[i]); } */ /* Now we can calculate how long the barcode is going to be - and stop it from being too long */ last_set = ' '; glyph_count = 0.0; for(i = 0; i < strlen(reduced); i++) { if((set[i] == 'a') || (set[i] == 'b')) { glyph_count = glyph_count + 1.0; } if(((set[i] == 'A') || (set[i] == 'B')) || (set[i] == 'C')) { if(set[i] != last_set) { last_set = set[i]; glyph_count = glyph_count + 1.0; } } if((set[i] == 'C') && (reduced[i] != '[')) { glyph_count = glyph_count + 0.5; } else { glyph_count = glyph_count + 1.0; } } if(glyph_count > 80.0) { strcpy(symbol->errtxt, "Input too long"); return ERROR_TOO_LONG; } /* So now we know what start character to use - we can get on with it! */ switch(set[0]) { case 'A': /* Start A */ concat(dest, C128Table[103]); values[0] = 103; break; case 'B': /* Start B */ concat(dest, C128Table[104]); values[0] = 104; break; case 'C': /* Start C */ concat(dest, C128Table[105]); values[0] = 105; break; } bar_characters++; concat(dest, C128Table[102]); values[1] = 102; bar_characters++; /* Encode the data */ read = 0; do { if((read != 0) && (set[read] != set[read - 1])) { /* Latch different code set */ switch(set[read]) { case 'A': concat(dest, C128Table[101]); values[bar_characters] = 101; bar_characters++; break; case 'B': concat(dest, C128Table[100]); values[bar_characters] = 100; bar_characters++; break; case 'C': concat(dest, C128Table[99]); values[bar_characters] = 99; bar_characters++; break; } } if((set[read] == 'a') || (set[read] == 'b')) { /* Insert shift character */ concat(dest, C128Table[98]); values[bar_characters] = 98; bar_characters++; } if(reduced[read] != '[') { switch(set[read]) { /* Encode data characters */ case 'A': case 'a': c128_set_a(reduced[read], dest, values, &bar_characters); read++; break; case 'B': case 'b': c128_set_b(reduced[read], dest, values, &bar_characters); read++; break; case 'C': c128_set_c(reduced[read], reduced[read + 1], dest, values, &bar_characters); read += 2; break; } } else { concat(dest, C128Table[102]); values[bar_characters] = 102; bar_characters++; read++; } } while (read < strlen(reduced)); /* "...note that the linkage flag is an extra code set character between the last data character and the Symbol Check Character" (GS1 Specification) */ /* Linkage flags in GS1-128 are determined by ISO/IEC 24723 section 7.4 */ switch(symbol->option_1) { case 1: case 2: /* CC-A or CC-B 2D component */ switch(set[strlen(reduced) - 1]) { case 'A': linkage_flag = 100; break; case 'B': linkage_flag = 99; break; case 'C': linkage_flag = 101; break; } break; case 3: /* CC-C 2D component */ switch(set[strlen(reduced) - 1]) { case 'A': linkage_flag = 99; break; case 'B': linkage_flag = 101; break; case 'C': linkage_flag = 100; break; } break; } if(linkage_flag != 0) { concat(dest, C128Table[linkage_flag]); values[bar_characters] = linkage_flag; bar_characters++; } /*for(i = 0; i < bar_characters; i++) { printf("[%d] ", values[i]); } printf("\n");*/ /* check digit calculation */ total_sum = 0; for(i = 0; i < bar_characters; i++) { if(i > 0) { values[i] *= i; } total_sum += values[i]; } concat(dest, C128Table[total_sum%103]); values[bar_characters] = total_sum % 103; bar_characters++; /* Stop character */ concat(dest, C128Table[106]); values[bar_characters] = 106; bar_characters++; expand(symbol, dest); /* Add the separator pattern for composite symbols */ if(symbol->symbology == BARCODE_EAN128_CC) { for(i = 0; i < symbol->width; i++) { if(!(module_is_set(symbol, separator_row + 1, i))) { set_module(symbol, separator_row, i); } } } for(i = 0; i < length; i++) { if((source[i] != '[') && (source[i] != ']')) { symbol->text[i] = source[i]; } if(source[i] == '[') { symbol->text[i] = '('; } if(source[i] == ']') { symbol->text[i] = ')'; } } return error_number; } int nve_18(struct zint_symbol *symbol, unsigned char source[], int length) { /* Add check digit if encoding an NVE18 symbol */ int error_number, zeroes, i, nve_check, total_sum, sourcelen; unsigned char ean128_equiv[25]; memset(ean128_equiv, 0, 25); sourcelen = length; if(sourcelen > 17) { strcpy(symbol->errtxt, "Input too long"); return ERROR_TOO_LONG; } error_number = is_sane(NEON, source, length); if(error_number == ERROR_INVALID_DATA1) { strcpy(symbol->errtxt, "Invalid characters in data"); return error_number; } zeroes = 17 - sourcelen; strcpy((char *)ean128_equiv, "[00]"); memset(ean128_equiv + 4, '0', zeroes); strcpy((char*)ean128_equiv + 4 + zeroes, (char*)source); total_sum = 0; for(i = sourcelen - 1; i >= 0; i--) { total_sum += ctoi(source[i]); if(!(i & 1)) { total_sum += 2 * ctoi(source[i]); } } nve_check = 10 - total_sum % 10; if(nve_check == 10) { nve_check = 0; } ean128_equiv[21] = itoc(nve_check); ean128_equiv[22] = '\0'; error_number = ean_128(symbol, ean128_equiv, ustrlen(ean128_equiv)); return error_number; } int ean_14(struct zint_symbol *symbol, unsigned char source[], int length) { /* EAN-14 - A version of EAN-128 */ int i, count, check_digit; int error_number, zeroes; unsigned char ean128_equiv[20]; if(length > 13) { strcpy(symbol->errtxt, "Input wrong length"); return ERROR_TOO_LONG; } error_number = is_sane(NEON, source, length); if(error_number == ERROR_INVALID_DATA1) { strcpy(symbol->errtxt, "Invalid character in data"); return error_number; } zeroes = 13 - length; strcpy((char*)ean128_equiv, "[01]"); memset(ean128_equiv + 4, '0', zeroes); ustrcpy(ean128_equiv + 4 + zeroes, source); count = 0; for (i = length - 1; i >= 0; i--) { count += ctoi(source[i]); if (!(i & 1)) { count += 2 * ctoi(source[i]); } } check_digit = 10 - (count % 10); if (check_digit == 10) { check_digit = 0; } ean128_equiv[17] = itoc(check_digit); ean128_equiv[18] = '\0'; error_number = ean_128(symbol, ean128_equiv, ustrlen(ean128_equiv)); return error_number; }