This commit is contained in:
Maxim Slipenko 2023-10-16 17:31:19 +03:00
parent dd765ae981
commit 2bdd88ba43
6 changed files with 179 additions and 2 deletions

View File

@ -16,7 +16,7 @@ repos:
rev: v0.8.8 rev: v0.8.8
hooks: hooks:
- id: licenseheaders - id: licenseheaders
args: ["-t", ".copyright.tmpl", "-cy", "-f", "-d", "statapp"] args: ["-t", ".copyright.tmpl", "-cy", "-f", "-d", "statapp", "-x", "statapp/_vendor/*.py"]
pass_filenames: false pass_filenames: false
- repo: local - repo: local
hooks: hooks:

33
poetry.lock generated
View File

@ -210,6 +210,23 @@ files = [
{file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"}, {file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
] ]
[[package]]
name = "mpmath"
version = "1.3.0"
description = "Python library for arbitrary-precision floating-point arithmetic"
optional = false
python-versions = "*"
files = [
{file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"},
{file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"},
]
[package.extras]
develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"]
docs = ["sphinx"]
gmpy = ["gmpy2 (>=2.1.0a4)"]
tests = ["pytest (>=4.6)"]
[[package]] [[package]]
name = "nodeenv" name = "nodeenv"
version = "1.8.0" version = "1.8.0"
@ -605,6 +622,20 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
] ]
[[package]]
name = "sympy"
version = "1.12"
description = "Computer algebra system (CAS) in Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"},
{file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"},
]
[package.dependencies]
mpmath = ">=0.19"
[[package]] [[package]]
name = "tomli" name = "tomli"
version = "2.0.1" version = "2.0.1"
@ -771,4 +802,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.8,<3.9" python-versions = ">=3.8,<3.9"
content-hash = "ff683c2a3f778cd6ad946d6aa4b1f567514f36026e07fccffdb2cd7e86778e0a" content-hash = "21505ce00b560ff75b732d5cb5ee983d1aff7b6e5dc919a306ac2147ea14f3ea"

View File

@ -17,6 +17,7 @@ pandas = { version = "^2", markers = "python_version < '3.9'" }
pylint = { version = "^2", markers = "python_version < '3.9'" } pylint = { version = "^2", markers = "python_version < '3.9'" }
# scipy = { version = "^1", markers = "python_version < '3.9'" } # scipy = { version = "^1", markers = "python_version < '3.9'" }
# openpyxl = "^3.1.2" # openpyxl = "^3.1.2"
sympy = "^1.12"
[build-system] [build-system]

View File

@ -19,9 +19,12 @@
# #
import sys import sys
import numpy as np
from PySide2 import QtCore from PySide2 import QtCore
from PySide2.QtWidgets import QApplication from PySide2.QtWidgets import QApplication
from statapp import calculations
from statapp.calculations import generateXValues, generateYValues
from statapp.main_window import MainWindow from statapp.main_window import MainWindow
@ -40,4 +43,18 @@ def main():
return app.exec_() return app.exec_()
if __name__ == "__main__": if __name__ == "__main__":
# Для быстрой отладки
N = 10
y = generateYValues(100, 5, N)
x1 = generateXValues(20, 2, 0, y)
x2 = generateXValues(10, 1, 0, y)
data = np.concatenate([y, x1, x2], axis=1)
out = calculations.squaredPolynom(data)
coef = []
print()
sys.exit(main()) sys.exit(main())

View File

@ -0,0 +1,116 @@
# Copyright (c) 2023 Matthew Rocklin
# All rights reserved.
# This source code is distributed under the terms of the BSD license,
# which allows you to use, modify, and distribute it
# as long as you comply with the license terms.
# In addition, this code has been modified by Maxim Slipenko and
# is now also licensed under the GPL-3.0.
# See the GPL-3.0 license for details.
# TODO: remove
# pylint: skip-file
from numpy import linalg, zeros, ones, hstack, asarray
import itertools
def basis_vector(n, i):
""" Return an array like [0, 0, ..., 1, ..., 0, 0]
>>> from multipolyfit.core import basis_vector
>>> basis_vector(3, 1)
array([0, 1, 0])
>>> basis_vector(5, 4)
array([0, 0, 0, 0, 1])
"""
x = zeros(n, dtype=int)
x[i] = 1
return x
def as_tall(x):
""" Turns a row vector into a column vector """
return x.reshape(x.shape + (1,))
def multipolyfit(xs, y, deg, full=False, model_out=False, powers_out=False):
"""
Least squares multivariate polynomial fit
Fit a polynomial like ``y = a**2 + 3a - 2ab + 4b**2 - 1``
with many covariates a, b, c, ...
Parameters
----------
xs : array_like, shape (M, k)
x-coordinates of the k covariates over the M sample points
y : array_like, shape(M,)
y-coordinates of the sample points.
deg : int
Degree o fthe fitting polynomial
model_out : bool (defaults to True)
If True return a callable function
If False return an array of coefficients
powers_out : bool (defaults to False)
Returns the meaning of each of the coefficients in the form of an
iterator that gives the powers over the inputs and 1
For example if xs corresponds to the covariates a,b,c then the array
[1, 2, 1, 0] corresponds to 1**1 * a**2 * b**1 * c**0
See Also
--------
numpy.polyfit
"""
y = asarray(y).squeeze()
rows = y.shape[0]
xs = asarray(xs)
num_covariates = xs.shape[1]
xs = hstack((ones((xs.shape[0], 1), dtype=xs.dtype) , xs))
generators = [basis_vector(num_covariates+1, i)
for i in range(num_covariates+1)]
# All combinations of degrees
powers = [sum(x) for x in itertools.combinations_with_replacement(generators, deg)]
# Raise data to specified degree pattern, stack in order
A = hstack(asarray([as_tall((xs**p).prod(1)) for p in powers]))
beta = linalg.lstsq(A, y, rcond=None)[0]
if model_out:
return mk_model(beta, powers)
if powers_out:
return beta, powers
return beta
def mk_model(beta, powers):
""" Create a callable python function out of beta/powers from multipolyfit
This function is callable from within multipolyfit using the model_out flag
"""
# Create a function that takes in many x values
# and returns an approximate y value
def model(*args):
num_covariates = len(powers[0]) - 1
if len(args)!=(num_covariates):
raise ValueError("Expected %d inputs"%num_covariates)
xs = asarray((1,) + args)
return sum([coeff * (xs**p).prod()
for p, coeff in zip(powers, beta)])
return model
def mk_sympy_function(beta, powers):
from sympy import symbols, Add, Mul, S
terms = get_terms(powers)
return Add(*[coeff * term for term, coeff in zip(terms, beta)])
def get_terms(powers):
from sympy import symbols, Add, Mul, S
num_covariates = len(powers[0]) - 1
xs = (S.One,) + symbols('x0:%d' % num_covariates)
terms = [Mul(*[x ** deg for x, deg in zip(xs, power)]) for power in powers]
return terms

View File

@ -21,6 +21,7 @@ from dataclasses import dataclass
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from statapp._vendor.multipolyfit import multipolyfit, mk_sympy_function
DIRECT_LINK = 0 DIRECT_LINK = 0
INDIRECT_LINK = 1 INDIRECT_LINK = 1
@ -92,3 +93,14 @@ def linearPolynom(inputData) -> LinearPolynomResult:
out.to_numpy(), out.to_numpy(),
np.float64(mse[0]) np.float64(mse[0])
) )
def squaredPolynom(inputData) -> LinearPolynomResult:
x = inputData[:, 1:]
y = inputData[:, 0]
data = pd.DataFrame(x)
betas, powers = multipolyfit(x, y, 2, powers_out=True)
res = mk_sympy_function(betas, powers)
print(data)
print(res)
return powers