mirror of
https://github.com/shizand/statapp.git
synced 2025-04-01 23:23:45 +03:00
fix: исправлены предупреждения Codacy
This commit is contained in:
parent
5b6597463c
commit
91acacfb5c
@ -20,7 +20,7 @@ class DistributionWindow(QDialog):
|
||||
|
||||
self.comboBox = QComboBox()
|
||||
self.comboBox.addItems(self.values)
|
||||
self.comboBox.currentIndexChanged.connect(self.on_change)
|
||||
self.comboBox.currentIndexChanged.connect(self.onChange)
|
||||
self.sc = self.getSc(data[:, 0])
|
||||
self.layout.addWidget(self.comboBox)
|
||||
|
||||
@ -29,7 +29,7 @@ class DistributionWindow(QDialog):
|
||||
self.layout.addLayout(self.l)
|
||||
|
||||
|
||||
def on_change(self):
|
||||
def onChange(self):
|
||||
while ((child := self.l.takeAt(0)) != None):
|
||||
child.widget().deleteLater()
|
||||
self.sc = self.getSc(self.data[:, self.comboBox.currentIndex()])
|
||||
@ -43,16 +43,19 @@ class UniformDistributionWindow(DistributionWindow):
|
||||
def getSc(self, points):
|
||||
sc = MplCanvas(self, width=5, height=4, dpi=100)
|
||||
points = np.sort(points)
|
||||
unique_points = np.array([points[0]] + [pt for pt, next_pt in zip(points[:-1], points[1:]) if pt != next_pt])
|
||||
differences = np.diff(unique_points)
|
||||
inverse_differences = 1 / differences
|
||||
for i, (start, end) in enumerate(zip(unique_points[:-1], unique_points[1:])):
|
||||
sc.axes.hlines(inverse_differences[i], start, end, colors='r', linestyles='solid')
|
||||
points = np.array(
|
||||
[points[0]] +
|
||||
[pt for pt, next_pt in zip(points[:-1], points[1:]) if pt != next_pt]
|
||||
)
|
||||
differences = np.diff(points)
|
||||
inverseDifferences = 1 / differences
|
||||
for i, (start, end) in enumerate(zip(points[:-1], points[1:])):
|
||||
sc.axes.hlines(inverseDifferences[i], start, end, colors='r', linestyles='solid')
|
||||
return sc
|
||||
|
||||
|
||||
def normal_density(x, mu, sigma_squared):
|
||||
return 1 / np.sqrt(2 * np.pi * sigma_squared) * np.exp(-(x - mu)**2 / (2 * sigma_squared))
|
||||
def normalDensity(x, mu, sigmaSquared):
|
||||
return 1 / np.sqrt(2 * np.pi * sigmaSquared) * np.exp(-(x - mu) ** 2 / (2 * sigmaSquared))
|
||||
|
||||
|
||||
class NormalDistributionWindow(DistributionWindow):
|
||||
@ -63,8 +66,8 @@ class NormalDistributionWindow(DistributionWindow):
|
||||
sc = MplCanvas(self, width=5, height=4, dpi=100)
|
||||
points = np.sort(points)
|
||||
mu = np.mean(points)
|
||||
sigma_squared = np.var(points)
|
||||
y_values = normal_density(points, mu, sigma_squared)
|
||||
sigmaSquared = np.var(points)
|
||||
y_values = normalDensity(points, mu, sigmaSquared)
|
||||
|
||||
sc.axes.plot(points, y_values)
|
||||
|
||||
@ -79,7 +82,7 @@ class ExponentialDistributionWindow(DistributionWindow):
|
||||
sc = MplCanvas(self, width=5, height=4, dpi=100)
|
||||
points = np.sort(points)
|
||||
mu = np.mean(points)
|
||||
lambda_param = 1 / mu
|
||||
y_values = lambda_param * np.exp(-lambda_param * points)
|
||||
lambdaParam = 1 / mu
|
||||
y_values = lambdaParam * np.exp(-lambdaParam * points)
|
||||
sc.axes.plot(points, y_values)
|
||||
return sc
|
Loading…
Reference in New Issue
Block a user