fix: исправлена "Остаточная дисперсия (масштабированная)" (#124)

This commit is contained in:
Maxim Slipenko 2024-02-29 19:14:03 +03:00 committed by GitHub
parent 7ad23735ce
commit babfd48ee1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 57 additions and 63 deletions

View File

@ -25,6 +25,7 @@ import sympy as sp
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
DIRECT_LINK = 0
@ -81,93 +82,79 @@ class RegressionResult:
monomials: list
def linearPolynom(data):
def _prepareDataAndFeatures(data, degree):
y = data[:, 0]
x = data[:, 1:]
polyFeatures = PolynomialFeatures(degree=1, include_bias=False)
polyFeatures = PolynomialFeatures(degree=degree, include_bias=False)
xPoly = polyFeatures.fit_transform(x)
return y, x, xPoly, polyFeatures
def _trainModelAndPredict(y, xPoly):
model = LinearRegression(fit_intercept=True)
model.fit(xPoly, y)
params = np.hstack([model.intercept_, model.coef_])
predictions = model.predict(xPoly)
residuals = y - predictions
return model, predictions
def _calculateStatistics(y, x, xPoly, predictions, model, polyFeatures):
# Рассчитываем Среднеквадратическую ошибку (MSE) между фактическими и прогнозируемыми значениями
mse = mean_squared_error(y, predictions)
rSquared = model.score(xPoly, y)
# Рассчитываем коэффициент детерминации R^2, который
# показывает долю вариации зависимой переменной, объясненную моделью
rSquared = r2_score(y, predictions)
# Определяем количество наблюдений
n = xPoly.shape[0]
# Определяем количество предикторов (признаков) плюс один для свободного члена
k = xPoly.shape[1] + 1
# Рассчитываем F-статистику для оценки значимости всей регрессионной модели
fStatistic = (rSquared / (k - 1)) / ((1 - rSquared) / (n - k))
xWithIntercept = np.hstack([np.ones((n, 1)), xPoly])
varB = mse * np.linalg.inv(xWithIntercept.T @ xWithIntercept).diagonal()
seB = np.sqrt(varB)
tStats = params / seB
monomials = ['c'] + ['x' + str(i) for i in range(1, x.shape[1] + 1)]
residualVariance = np.var(residuals, ddof=k)
scaledResidualVariance = residualVariance / (n - k)
paramsAndTStats = np.vstack((params, tStats)).T
return RegressionResult(
paramsAndTStats,
residualVariance,
scaledResidualVariance,
rSquared,
fStatistic,
monomials
)
def squaredPolynom(data):
y = data[:, 0]
x = data[:, 1:]
polyFeatures = PolynomialFeatures(degree=2, include_bias=False)
xPoly = polyFeatures.fit_transform(x)
model = LinearRegression(fit_intercept=True)
model.fit(xPoly, y)
# Собираем параметры модели, включая свободный член и коэффициенты перед переменными
params = np.hstack([model.intercept_, model.coef_])
predictions = model.predict(xPoly)
# Вычисляем остатки модели как разницу между фактическими и прогнозируемыми значениями
residuals = y - predictions
mse = mean_squared_error(y, predictions)
rSquared = model.score(xPoly, y)
n = xPoly.shape[0]
k = xPoly.shape[1] + 1
fStatistic = (rSquared / (k - 1)) / ((1 - rSquared) / (n - k))
# Добавляем столбец единиц к матрице признаков для учета свободного члена в регрессионной модели
xWithIntercept = np.hstack([np.ones((n, 1)), xPoly])
# Рассчитываем дисперсии коэффициентов модели
varB = mse * np.linalg.pinv(xWithIntercept.T @ xWithIntercept).diagonal()
# Вычисляем стандартные ошибки коэффициентов, берем корень из дисперсий
seB = np.sqrt(np.maximum(varB, 0))
# Рассчитываем t-статистики для каждого коэффициента
tStats = params / seB
# Рассчитываем дисперсию остатков с поправкой на количество параметров
residualVariance = np.var(residuals, ddof=k)
# Рассчитываем скорректированную дисперсию остатков
scaledResidualVariance = 1 - rSquared
# Генерируем список мономов (названий признаков после
# полиномиализации), добавляя константу для свободного члена
monomials = ['c'] + list(
polyFeatures.get_feature_names_out(['x' + str(i) for i in range(1, x.shape[1] + 1)])
)
# Заменяем пробелы на звездочки для представления умножения в названиях мономов
monomials = [monomial.replace(' ', '*') for monomial in monomials]
# Возвращаем рассчитанные статистики и названия мономов
return params, tStats, residualVariance, scaledResidualVariance, rSquared, fStatistic, monomials
residualVariance = np.var(residuals, ddof=k)
scaledResidualVariance = residualVariance / (n - k)
paramsAndTStats = np.vstack((params, tStats)).T
def _regressionAnalysis(data, degree):
y, x, xPoly, polyFeatures = _prepareDataAndFeatures(
data, degree
)
model, predictions = _trainModelAndPredict(y, xPoly)
(params, tStats, residualVariance,
scaledResidualVariance, rSquared, fStatistic, monomials) = (
_calculateStatistics(
y,
x,
xPoly,
predictions,
model,
polyFeatures
))
return RegressionResult(
paramsAndTStats,
np.vstack((params, tStats)).T,
residualVariance,
scaledResidualVariance,
rSquared,
@ -175,6 +162,13 @@ def squaredPolynom(data):
monomials
)
def linearPolynom(data):
return _regressionAnalysis(data, 1)
def squaredPolynom(data):
return _regressionAnalysis(data, 2)
def prediction(inputData, result: RegressionResult):
inputs = inputData[:, 1:]

View File

@ -116,4 +116,4 @@ class TransformPolynomWindow(QDialog):
self.ui.residualVarianceValueLabel.setText(str(result.residualVariance))
self.ui.scaledResidualVarianceValueLabel.setText(str(result.scaledResidualVariance))
self.ui.fStatisticValueLabel.setText(str(result.fStatistic))
self.ui.rSquaredValueLabel.setText(str(result.scaledResidualVariance))
self.ui.rSquaredValueLabel.setText(str(result.rSquared))