mirror of
https://github.com/shizand/statapp.git
synced 2025-09-16 20:42:24 +03:00
86 lines
3.2 KiB
Python
86 lines
3.2 KiB
Python
#
|
|
# Copyright (c) 2024 Maxim Slipenko, Eugene Lazurenko.
|
|
#
|
|
# This file is part of Statapp
|
|
# (see https://github.com/shizand/statapp).
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
import numpy as np
|
|
from PySide2.QtWidgets import QDialog, QHeaderView
|
|
import matplotlib
|
|
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg
|
|
from matplotlib.figure import Figure
|
|
|
|
from statapp.calculations import prediction
|
|
from statapp.mathtex_header_view import MathTexHeaderView
|
|
from statapp.models.prediction_table_model import PreditionTableModel
|
|
from statapp.models.regression_result_model import RegressionResultModel
|
|
from statapp.ui.ui_polynom_window import Ui_PolynomWindow
|
|
from statapp.utils import addIcon, FloatDelegate
|
|
|
|
|
|
matplotlib.use('Qt5Agg')
|
|
|
|
class MplCanvas(FigureCanvasQTAgg):
|
|
|
|
def __init__(self, parent=None, width=5, height=4, dpi=100):
|
|
fig = Figure(figsize=(width, height), dpi=dpi)
|
|
self.axes = fig.add_subplot()
|
|
super().__init__(fig)
|
|
|
|
class PolynomWindow(QDialog):
|
|
def __init__(self, data, result, windowTitle):
|
|
super().__init__()
|
|
self.ui = Ui_PolynomWindow()
|
|
self.ui.setupUi(self)
|
|
addIcon(self)
|
|
self.setWindowTitle(windowTitle)
|
|
|
|
self.model = RegressionResultModel(result)
|
|
self.ui.tableView.setItemDelegate(FloatDelegate())
|
|
self.ui.tableView.setModel(self.model)
|
|
self.ui.tableView.setVerticalHeader(MathTexHeaderView(self.ui.tableView))
|
|
header = self.ui.tableView.horizontalHeader()
|
|
header.setSectionResizeMode(QHeaderView.ResizeMode.Stretch)
|
|
|
|
self.ui.residualVarianceValueLabel.setText(str(result.residualVariance))
|
|
self.ui.scaledResidualVarianceValueLabel.setText(str(result.scaledResidualVariance))
|
|
self.ui.fStatisticValueLabel.setText(str(result.fStatistic))
|
|
self.ui.rSquaredValueLabel.setText(str(result.rSquared))
|
|
|
|
predictionResult = prediction(data, result)
|
|
|
|
self.predictionModel = PreditionTableModel(predictionResult)
|
|
self.ui.predictionTableView.setModel(self.predictionModel)
|
|
header = self.ui.predictionTableView.horizontalHeader()
|
|
header.setSectionResizeMode(QHeaderView.ResizeMode.Stretch)
|
|
|
|
sc = MplCanvas(self, width=5, height=4, dpi=100)
|
|
|
|
xAxes = np.array(range(len(data[:, 0])))
|
|
|
|
realY = predictionResult[:, 0]
|
|
calculatedY = predictionResult[:, 1]
|
|
|
|
sc.axes.scatter(xAxes, realY)
|
|
|
|
# xnew = np.linspace(xAxes.min(), xAxes.max(), 300)
|
|
# gfg = scipy.interpolate.make_interp_spline(xAxes, y, k=3)
|
|
# y_new = gfg(xnew)
|
|
|
|
sc.axes.plot(xAxes, calculatedY)
|
|
|
|
self.ui.plotContainer.addWidget(sc)
|